
Open Charge Point Protocol 1.6

edition 2 FINAL, 2017-09-28

Table of Contents

1. Scope. 4

2. Terminology and Conventions . 5

2.1. Conventions . 5

2.2. Definitions . 5

2.3. Abbreviations . 6

2.4. References. 7

3. Introduction . 8

3.1. Edition 2. 8

3.2. Document structure. 8

3.3. Feature Profiles . 8

3.4. General views of operation . 10

3.5. Local Authorization & Offline Behavior . 12

3.6. Transaction in relation to Energy Transfer Period . 15

3.7. Transaction-related messages . 17

3.8. Connector numbering . 18

3.9. ID Tokens . 18

3.10. Parent idTag . 19

3.11. Reservations . 19

3.12. Vendor-specific data transfer. 19

3.13. Smart Charging . 20

3.14. Time zones . 29

3.15. Time notations . 29

3.16. Metering Data. 29

4. Operations Initiated by Charge Point. 32

4.1. Authorize . 32

4.2. Boot Notification . 32

4.3. Data Transfer . 34

4.4. Diagnostics Status Notification . 34

4.5. Firmware Status Notification . 34

4.6. Heartbeat . 35

4.7. Meter Values . 35

4.8. Start Transaction . 37

4.9. Status Notification . 38

4.10. Stop Transaction . 43

5. Operations Initiated by Central System. 45

5.1. Cancel Reservation . 45

5.2. Change Availability. 45

5.3. Change Configuration . 45

5.4. Clear Cache . 46

5.5. Clear Charging Profile . 47

5.6. Data Transfer . 47

5.7. Get Composite Schedule. 47

5.8. Get Configuration. 48

5.9. Get Diagnostics. 48

5.10. Get Local List Version . 49

5.11. Remote Start Transaction . 49

5.12. Remote Stop Transaction . 50

5.13. Reserve Now. 51

5.14. Reset . 52

5.15. Send Local List . 52

5.16. Set Charging Profile . 53

5.17. Trigger Message . 55

5.18. Unlock Connector . 56

5.19. Update Firmware . 57

6. Messages . 60

6.1. Authorize.req . 60

6.2. Authorize.conf . 60

6.3. BootNotification.req . 60

6.4. BootNotification.conf . 61

6.5. CancelReservation.req . 61

6.6. CancelReservation.conf. 61

6.7. ChangeAvailability.req . 61

6.8. ChangeAvailability.conf . 62

6.9. ChangeConfiguration.req . 62

6.10. ChangeConfiguration.conf . 62

6.11. ClearCache.req . 62

6.12. ClearCache.conf . 63

6.13. ClearChargingProfile.req . 63

6.14. ClearChargingProfile.conf. 63

6.15. DataTransfer.req . 63

6.16. DataTransfer.conf . 64

6.17. DiagnosticsStatusNotification.req . 64

6.18. DiagnosticsStatusNotification.conf . 64

6.19. FirmwareStatusNotification.req. 64

6.20. FirmwareStatusNotification.conf. 65

6.21. GetCompositeSchedule.req . 65

6.22. GetCompositeSchedule.conf . 65

6.23. GetConfiguration.req . 65

6.24. GetConfiguration.conf. 66

6.25. GetDiagnostics.req . 66

6.26. GetDiagnostics.conf. 66

6.27. GetLocalListVersion.req . 66

6.28. GetLocalListVersion.conf . 67

6.29. Heartbeat.req . 67

6.30. Heartbeat.conf . 67

6.31. MeterValues.req. 67

6.32. MeterValues.conf . 67

6.33. RemoteStartTransaction.req . 68

6.34. RemoteStartTransaction.conf . 68

6.35. RemoteStopTransaction.req . 68

6.36. RemoteStopTransaction.conf. 68

6.37. ReserveNow.req . 68

6.38. ReserveNow.conf . 69

6.39. Reset.req . 69

6.40. Reset.conf . 69

6.41. SendLocalList.req. 69

6.42. SendLocalList.conf . 70

6.43. SetChargingProfile.req . 70

6.44. SetChargingProfile.conf . 70

6.45. StartTransaction.req . 71

6.46. StartTransaction.conf . 71

6.47. StatusNotification.req . 71

6.48. StatusNotification.conf . 72

6.49. StopTransaction.req . 72

6.50. StopTransaction.conf . 72

6.51. TriggerMessage.req . 73

6.52. TriggerMessage.conf . 73

6.53. UnlockConnector.req . 73

6.54. UnlockConnector.conf. 73

6.55. UpdateFirmware.req . 73

6.56. UpdateFirmware.conf . 74

7. Types. 75

7.1. AuthorizationData . 75

7.2. AuthorizationStatus . 75

7.3. AvailabilityStatus . 75

7.4. AvailabilityType. 76

7.5. CancelReservationStatus . 76

7.6. ChargePointErrorCode . 76

7.7. ChargePointStatus . 77

7.8. ChargingProfile . 78

7.9. ChargingProfileKindType . 79

7.10. ChargingProfilePurposeType . 79

7.11. ChargingProfileStatus . 80

7.12. ChargingRateUnitType . 80

7.13. ChargingSchedule . 80

7.14. ChargingSchedulePeriod . 81

7.15. CiString20Type . 81

7.16. CiString25Type . 81

7.17. CiString50Type . 82

7.18. CiString255Type . 82

7.19. CiString500Type . 82

7.20. ClearCacheStatus . 82

7.21. ClearChargingProfileStatus . 83

7.22. ConfigurationStatus. 83

7.23. DataTransferStatus . 83

7.24. DiagnosticsStatus. 84

7.25. FirmwareStatus . 84

7.26. GetCompositeScheduleStatus . 84

7.27. IdTagInfo . 85

7.28. IdToken . 85

7.29. KeyValue . 85

7.30. Location. 86

7.31. Measurand . 86

7.32. MessageTrigger . 88

7.33. MeterValue . 88

7.34. Phase . 89

7.35. ReadingContext . 89

7.36. Reason. 90

7.37. RecurrencyKindType . 90

7.38. RegistrationStatus . 91

7.39. RemoteStartStopStatus. 91

7.40. ReservationStatus . 91

7.41. ResetStatus . 92

7.42. ResetType . 92

7.43. SampledValue. 92

7.44. TriggerMessageStatus . 93

7.45. UnitOfMeasure. 93

7.46. UnlockStatus. 94

7.47. UpdateStatus . 94

7.48. UpdateType . 95

7.49. ValueFormat . 95

8. Firmware and Diagnostics File Transfer . 96

8.1. Download Firmware . 96

8.2. Upload Diagnostics . 96

9. Standard Configuration Key Names & Values . 97

9.1. Core Profile . 97

9.2. Local Auth List Management Profile . 106

9.3. Reservation Profile. 106

9.4. Smart Charging Profile . 107

Appendix A: New in OCPP 1.6 . 109

A.1. Updated/New Messages: . 109

Interface description between Charge Point and Central System

Document Version 1.6 edition 2

Document Status FINAL

Document Release Date 2017-09-28

1

Copyright © 2010 – 2017 Open Charge Alliance. All rights reserved.

This document is made available under the *Creative Commons Attribution-NoDerivatives 4.0 International Public

License* (https://creativecommons.org/licenses/by-nd/4.0/legalcode).

2

https://creativecommons.org/licenses/by-nd/4.0/legalcode

Version History

VERSION DATE AUTHOR DESCRIPTION

1.6 edition 2 2017-09-28 Robert de Leeuw
IHomer

Brendan McMahon
ESB ecars

Klaas van Zuuren
ElaadNL

OCPP 1.6 edition 2 Final release.

Contains all of the known erratas (including v3.0) and improved styling.

1.6 2015-10-08 Robert de Leeuw
IHomer

Reinier Lamers
The New Motion

Brendan McMahon
ESB ecars

Lambert Muhlenberg
Alfen

Patrick Rademakers
IHomer

Sergiu Tcaciuc
smartlab

Klaas van Zuuren
ElaadNL

1.6 Final Release.

For changes relative to 1.5, see appendix New in OCPP 1.6.

1.5 2012-06-01 Franc Buve Specification ready for release. Includes:

CR-01 Authentication/authorization lists

CR-02 Interval meter readings

CR-03 Charge point reservation

CR-04 Generic data transfer

CR-05 More detailed status notifications

CR-06 Query configuration parameters

CR-07 Timestamp in BootNotification mandatory

CR-08 Response to StartTransaction.req with status other than Accepted is not
clearly defined

CR-09 Increase size of firmwareVersion in BootNotification

1.2 2011-02-21 Franc Buve

1.0 2010-10-19 Franc Buve Final version approved by e-laad.nl. Identical to version 0.12.

3

1. Scope

This document defines the protocol used between a Charge Point and Central System. If the protocol requires

a certain action or response from one side or the other, then this will be stated in this document.

The specification does not define the communication technology. Any technology will do, as long as it supports

TCP/IP connectivity.

4

2. Terminology and Conventions

2.1. Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,

“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119],

subject to the following additional clarification clause:

The phrase “valid reasons in particular circumstances” relating to the usage of the terms “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, and “NOT RECOMMENDED” is to be taken to mean technically valid reasons, such as

the absence of necessary hardware to support a function from a charge point design: for the purposes of this

specification it specifically excludes decisions made on commercial, or other non-technical grounds, such as cost

of implementation, or likelihood of use.

All sections and appendixes, except “Scope” and “Terminology and Conventions”, are normative, unless they are

explicitly indicated to be informative.

2.2. Definitions

This section contains the terminology that is used throughout this document.

Central System Charge Point Management System: the central system that manages Charge Points and has the information
for authorizing users for using its Charge Points.

CiString Case Insensitive String. Only printable ASCII allowed.

Charge Point The Charge Point is the physical system where an electric vehicle can be charged. A Charge Point has one or
more connectors.

Charging Profile Generic Charging Profile, used for different types of Profiles. Contains information about the Profile and holds
the Charging Schedule. In future versions of OCPP it might hold more than 1 Charging Schedule.

Charging Schedule Part of a Charging Profile. Defines a block of charging Power or Current limits. Can contain a start time and
length.

Charging Session A Charging Session is started when first interaction with user or EV occurs. This can be a card swipe, remote
start of transaction, connection of cable and/or EV, parking bay occupancy detector, etc.

Composite Charging Schedule The charging schedule as calculated by the Charge Point. It is the result of the calculation of all active
schedules and possible local limits present in the Charge Point. Local Limits might be taken into account.

Connector The term “Connector”, as used in this specification, refers to an independently operated and managed
electrical outlet on a Charge Point. This usually corresponds to a single physical connector, but in some cases
a single outlet may have multiple physical socket types and/or tethered cable/connector arrangements to
facilitate different vehicle types (e.g. four-wheeled EVs and electric scooters).

Control Pilot signal Signal used by a Charge Point to inform EV of maximum Charging power or current limit, as defined by
[IEC61851-1].

Energy Offer Period Energy Offer Period starts when the EVSE is ready and willing to supply energy.

Energy Offer SuspendPeriod During a transaction, there may be periods the EnergyOffer to EV is suspended by the EVSE, for instance due
to Smart Charging or local balancing.

5

Energy Transfer Period Time during which an EV chooses to take offered energy, or return it. Multiple Energy Transfer Periods are
possible during a Transaction.

Local Controller Optional device in a smart charging infrastructure. Located on the premises with a number of Charge Points
connected to it. Sits between the Charge Points and Central System. Understands and speaks OCPP
messages. Controls the Power or Current in other Charge Point by using OCPP smart charging messages. Can
be a Charge Point itself.

OCPP-J OCPP via JSON over WebSocket

OCPP-S OCPP via SOAP

Phase Rotation Defines the wiring order of the phases between the electrical meter (or if absent, the grid connection), and
the Charge Point connector.

Transaction The part of the charging process that starts when all relevant preconditions (e.g. authorization, plug inserted)
are met, and ends at the moment when the Charge Point irrevocably leaves this state.

String Case Sensitive String. Only printable ASCII allowed. All strings in messages and enumerations are case
sensitive, unless explicitly stated otherwise.

2.3. Abbreviations

CSL Comma Separated List

CPO Charge Point Operator

DNS Domain Name System

DST Daylight Saving Time

EV Electrical Vehicle, this can be BEV (battery EV) or PHEV (plug-in hybrid EV)

EVSE Electric Vehicle Supply Equipment [IEC61851-1]

FTP(S) File Transport Protocol (Secure)

HTTP(S) HyperText Transport Protocol (Secure)

ICCID Integrated Circuit Card Identifier

IMSI International Mobile Subscription Identity

JSON JavaScript Object Notation

NAT Native Address Translation

PDU Protocol Data Unit

SC Smart Charging

6

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

RST 3 phase power connection, Standard Reference Phasing

RTS 3 phase power connection, Reversed Reference Phasing

SRT 3 phase power connection, Reversed 240 degree rotation

STR 3 phase power connection, Standard 120 degree rotation

TRS 3 phase power connection, Standard 240 degree rotation

TSR 3 phase power connection, Reversed 120 degree rotation

UTC Coordinated Universal Time

2.4. References

[IEC61851-1] “IEC 61851-1 2010: Electric vehicle conductive charging system - Part 1: General requirements”
https://webstore.iec.ch/publication/6029

[OCPP1.5] “OCPP 1.5: Open Charge Proint Protocol 1.5” http://www.openchargealliance.org/downloads/

[OCPP_1.6CT] “OCPP 1.6 Compliance testing” http://www.openchargealliance.org/downloads/

[OCPP_IMP_J] “OCPP JSON Specification” http://www.openchargealliance.org/downloads/

[OCPP_IMP_S] “OCPP SOAP Specification” http://www.openchargealliance.org/downloads/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997. http://www.ietf.org/rfc/rfc2119.txt

7

https://webstore.iec.ch/publication/6029
http://www.openchargealliance.org/downloads/
http://www.openchargealliance.org/downloads/
http://www.openchargealliance.org/downloads/
http://www.openchargealliance.org/downloads/
http://www.ietf.org/rfc/rfc2119.txt

3. Introduction

This is the specification for OCPP version 1.6.

OCPP is a standard open protocol for communication between Charge Points and a Central System and is

designed to accommodate any type of charging technique.

OCPP 1.6 introduces new features to accommodate the market: Smart Charging, OCPP using JSON over

Websockets, better diagnostics possibilities (Reason), more Charge Point Statuses and TriggerMessage. OCPP 1.6

is based on OCPP 1.5, with some new features and a lot of textual improvements, clarifications and fixes for all

known ambiguities. Due to improvements and new features, OCPP 1.6 is not backward compatible with OCPP

1.5.

For a full list of changes, see: New in OCPP 1.6.

Some basic concepts are explained in the sections below in this introductory chapter. The chapters: Operations

Initiated by Charge Point and Operations Initiated by Central System describe the operations supported by the

protocol. The exact messages and their parameters are detailed in the chapter: Messages and data types are

described in chapter: Types. Defined configuration keys are described in the chapter: Standard Configuration

Key Names & Values.

3.1. Edition 2

This document is OCPP 1.6 edition 2. This document still describes the same protocol: OCPP 1.6, only the

documentation is improved. On message level there are no changes compared to the original release of OCPP

1.6 of October 2015. All known errata (previously published in a separate document) have been merged into this

document, making it easier for the implementers to work with the specification. When there is doubt about the

way OCPP 1.6 should be implemented, this document over rules the original document.

3.2. Document structure

With the introduction of OCPP 1.6, there are two different flavours of OCPP; next to the SOAP based

implementations, there is the possibility to use the much more compact JSON alternative. To avoid confusion in

communication on the type of implementation we recommend using the distinct suffixes -J and -S to indicate

JSON or SOAP. In generic terms this would be OCPP-J for JSON and OCPP-S for SOAP.

To support the different flavours, the OCPP standard is divided in multiple documents. The base document (the

one you are reading now) contains the technical protocol specification. The technical protocol specification must

be used with one of the transport protocol specifications. the OCPP SOAP Specification contains the

implementation specification needed to make a OCPP-S implementation. For OCPP-J, the OCPP JSON

Specification must be used.

For improved interoperabillity between the Central Systems and Charge Points, it is adviced to meet the

requirements stated in the OCPP 1.6 Compliance testing documentation.

3.3. Feature Profiles

This section is normative.

8

In OCPP 1.6 features and associated messages are grouped in profiles. Depending on the required functionality,

implementers can choose to implement one or more of the following profiles.

PROFILE NAME DESCRIPTION

Core Basic Charge Point functionality comparable with OCPP 1.5 [OCPP1.5] without support for firmware updates, local
authorization list management and reservations.

Firmware Management Support for firmware update management and diagnostic log file download.

Local Auth List Management Features to manage the local authorization list in Charge Points.

Reservation Support for reservation of a Charge Point.

Smart Charging Support for basic Smart Charging, for instance using control pilot.

Remote Trigger Support for remote triggering of Charge Point initiated messages

These profiles can be used by a customer to determine if a OCPP 1.6 product has the required functionality for

their business case. Compliance testing will test per profile if a product is compliant with the OCPP 1.6

specification.

Implementation of the Core profile is required. Other profiles are optional.

When the profiles Core, Firmware Management, Local Auth List Management and Reservation are

implemented, all functions originating from OCPP 1.5 [OCPP1.5] are covered.

The grouping of all messages in their profiles can be found in the table below.

MESSAGE CORE
FIRMWARE

MANAGEMENT

LOCAL AUTH
LIST

MANAGEMENT

REMOTE
TRIGGER

RESERVATION
SMART

CHARGING

Authorize X

BootNotification X

ChangeAvailability X

ChangeConfiguration X

ClearCache X

DataTransfer X

GetConfiguration X

Heartbeat X

9

MESSAGE CORE
FIRMWARE

MANAGEMENT

LOCAL AUTH
LIST

MANAGEMENT

REMOTE
TRIGGER

RESERVATION
SMART

CHARGING

MeterValues X

RemoteStartTransaction X

RemoteStopTransaction X

Reset X

StartTransaction X

StatusNotification X

StopTransaction X

UnlockConnector X

GetDiagnostics X

DiagnosticsStatusNotification X

FirmwareStatusNotification X

UpdateFirmware X

GetLocalListVersion X

SendLocalList X

CancelReservation X

ReserveNow X

ClearChargingProfile X

GetCompositeSchedule X

SetChargingProfile X

TriggerMessage X

The support for the specific feature profiles is reported by the SupportedFeatureProfiles configuration key.

3.4. General views of operation

This section is informative.

10

The following figures describe the general views of the operations between Charge Point and Central System for

two cases:

1. a Charge Point requesting authentication of a card and sending charge transaction status,

2. Central System requesting a Charge Point to update its firmware.

The arrow labels in the following figures indicate the PDUs exchanged during the invocations of the operations.

These PDUs are defined in detail in the Messages section.

Charge Point Central System

Authorize.req(idTag)

Authorize.conf(idTagInfo)

Start Charging

StartTransaction.req(connectorId, idTag, meterStart, timestamp, [reservationId])

StartTransaction.conf(idTagInfo, transactionId)

Charging...

Authorize.req(idTag)

Authorize.conf(idTagInfo)

Stop Charging

StopTransaction.req(meterStop, timestamp, transactionId, [reason], [idTag], [transactionData])

StopTransaction.conf(idTagInfo)

Figure 1. Sequence Diagram: Example of starting and stopping a transaction

When a Charge Point needs to charge an electric vehicle, it needs to authenticate the user first before the

charging can be started. If the user is authorized the Charge Point informs the Central System that it has started

with charging.

When a user wishes to unplug the electric vehicle from the Charge Point, the Charge Point needs to verify that

the user is either the one that initiated the charging or that the user is in the same group and thus allowed to

terminate the charging. Once authorized, the Charge Point informs the Central System that the charging has

been stopped.


A Charge Point MUST NOT send an Authorize.req before stopping a transaction if the

presented idTag is the same as the idTag presented to start the transaction.

11

Charge Point Central System

UpdateFirmware.req(location, retrieveDate, [retries], [retryInterval])

UpdateFirmware.conf()

Downloading firmware...

FirmwareStatusNotification.req(status: Downloaded)

FirmwareStatusNotification.conf()

Installing...

FirmwareStatusNotification.req(status: Installed)

FirmwareStatusNotification.conf()

Reboot

BootNotification.req(chargePointModel, chargePointVendor, [chargeBoxSerialNumber],
[chargePointSerialNumber],[firmwareVersion], [iccid], [imsi],
[meterSerialNumber], [meterType])

BootNotification.conf(currentTime, heartbeatInterval, status)

Figure 2. Sequence Diagram: Example of a firmware update

When a Charge Point needs to be updated with new firmware, the Central System informs the Charge Point of

the time at which the Charge Point can start downloading the new firmware. The Charge Point SHALL notify the

Central System after each step as it downloads and installs the new firmware.

3.5. Local Authorization & Offline Behavior

This section is normative.

In the event of unavailability of the communications or even of the Central System, the Charge Point is designed

to operate stand-alone. In that situation, the Charge Point is said to be offline.

To improve the experience for users, a Charge Point MAY support local authorization of identifiers, using an

Authorization Cache and/or a Local Authorization List.

This allows (a) authorization of a user when offline, and (b) faster (apparent) authorization response time when

communication between Charge Point and Central System is slow.

The LocalAuthorizeOffline configuration key controls whether a Charge Point will authorize a user when

offline using the Authorization Cache and/or the Local Authorization List.

The LocalPreAuthorize configuration key controls whether a Charge Point will use the Authorization Cache

and/or the Local Authorization List to start a transaction without waiting for an authorization response from the

Central System.

A Charge Point MAY support the (automatic) authorization of any presented identifier when offline, to avoid

refusal of charging to bona-fide users that cannot be explicitly authorized by Local Authorization

List/Authorization Cache entries. This functionality is explained in more detail in Unknown Offline Authorization.

12

3.5.1. Authorization Cache

A Charge Point MAY implement an Authorization Cache that autonomously maintains a record of previously

presented identifiers that have been successfully authorized by the Central System. (Successfully meaning: a

response received on a message containing an idTag)

If implemented, the Authorization Cache SHOULD conform to the following semantics:

• The Cache contains all the latest received identifiers (i.e. valid and NOT-valid).

• The Cache is updated using all received IdTagInfo (from Authorize.conf, StartTransaction.conf and

StopTransaction.conf)

• When the validity of a Cache entry expires, it SHALL be changed to expired in the Cache.

• When an IdTagInfo is received for an identifier in the Cache, it SHALL be updated.

• If new identifier authorization data is received and the Authorization Cache is full, the Charge Point SHALL

remove any NOT-valid entries, and then, if necessary, the oldest valid entries to make space for the new

entry.

• Cache values SHOULD be stored in non-volatile memory, and SHOULD be persisted across reboots and

power outages.

• When an identifier is presented that is stored in the cache as NOT-valid, and the Charge Point is online: an

Authorize.req SHOULD be sent to the central System to check the current state of the identifier.

Operation of the Authorization Cache, when present, is reported (and controlled, where possible) by the

AuthorizationCacheEnabled configuration key.

3.5.2. Local Authorization List

The Local Authorization List is a list of identifiers that can be synchronized with the Central System.

The list contains the authorization status of all (or a selection of) identifiers and the authorization

status/expiration date.

Identifiers in the Local Authorization list can be marked as valid, expired, (temporarily) blocked, or

blacklisted, corresponding to IdTagInfo status values Accepted/ConcurrentTx, Expired, Blocked, and Invalid,

respectively.

These values may be used to provide more fine grained information to users (e.g. by display message) during

local authorization.

The Local Authorization List SHOULD be maintained by the Charge Point in non-volatile memory, and SHOULD

be persisted across reboots and power outages.

A Charge Point that supports Local Authorization List SHOULD implement the configuration key:

LocalAuthListMaxLength This gives the Central System a way to known the the maximum possible number

of Local Authorization List elements in a Charge Point

The Charge Point indicates whether the Local Authorization List is supported by the presence or absence of the

LocalAuthListManagement element in the value of the SupportedFeatureProfiles configuration key.

13

Whether the Local Authorization List is enabled is reported and controlled by the LocalAuthListEnabled

configuration key.

The Central System can synchronize this list by either (1) sending a complete list of identifiers to replace the

Local Authorization List or (2) by sending a list of changes (add, update, delete) to apply to the Local

Authorization List. The operations to support this are Get Local List Version and Send Local List.

Charge Point Central System

SendLocalList.req(listVersion: 234 , updateType: Full , [localAuthorizationList])

SendLocalList.conf(status: Accepted)

Figure 3. Sequence Diagram: Example of a full local authorization list update

Charge Point Central System

GetLocalListVersion.req()

GetLocalListVersion.conf(listVersion: 234)

SendLocalList.req(listVersion: 239 , updateType: Differential , [AuthorisationData])

SendLocalList.conf(status: Accepted)

Figure 4. Sequence Diagram: Example of a differential local authorization list update

The Charge Point SHALL NOT modify the contents of the Authorization List by any other means than upon a the

receipt of a SendLocalList PDU from the Central System.



Conflicts between the local authorization list and the validity reported in, for instance, a

StartTransaction.conf message might occur. When this happens the Charge Point SHALL

inform the Central System by sending a StatusNotification with ConnectorId set to 0, and

ErrorCode set to 'LocalListConflict'.

3.5.3. Relation between Authorization Cache and Local Authorization List

The Authorization Cache and Local Authorization List are distinct logical data structures. Identifiers known in the

Local Authorization List SHALL NOT be added to the Authorization Cache.

Where both Authorization Cache and Local Authorization List are supported, a Charge Point SHALL treat Local

Authorization List entries as having priority over Authorization Cache entries for the same identifiers.

3.5.4. Unknown Offline Authorization

When offline, a Charge Point MAY allow automatic authorization of any "unknown" identifiers that cannot be

explicitly authorized by Local Authorization List or Authorization Cache entries. Identifiers that are present in a

Local Authorization List that have a status other than “Accepted” (Invalid, Blocked, Expired) MUST be rejected.

Identifiers that were valid but are apparently expired due to passage of time MUST also be rejected.

Operation of the Unknown Offline Authorization capability, when supported, is reported (and controlled, where

possible) by the AllowOfflineTxForUnknownId configuration key.

14

When connection to the Central Server is restored, the Charge Point SHALL send a Start Transaction request for

any transaction that was authorized offline, as required by transaction-related message handling. When the

authorization status in the StartTransaction.conf is not Accepted, and the transaction is still ongoing, the Charge

Point SHOULD:

• when StopTransactionOnInvalidId is set to true: stop the transaction normally as stated in Stop

Transaction. The Reason field in the Stop Transaction request should be set to DeAuthorized. If the Charge

Point has the possibility to lock the Charging Cable, it SHOULD keep the Charging Cable locked until the

owner presents his identifier.

• when StopTransactionOnInvalidId is set to false: only stop energy delivery to the vehicle.


In the case of an invalid identifier, an operator MAY choose to charge the EV with a minimum

amount of energy so the EV is able to drive away. This amount is controlled by the optional

configuration key: MaxEnergyOnInvalidId.

3.6. Transaction in relation to Energy Transfer Period

This section is informative.

The Energy Transfer Period is a period of time during wich energy is transferred between the EV and the EVSE.

There MAY be multiple Energy Transfer Periods during a Transaction.

Multiple Energy Transfer Periods can be separated by either:

• an EVSE-initiated supense of transfer during which de EVSE does not offer energy transfer

• an EV-initiated suspense of transfer during which the EV remains electrically connected to the EVSE

• an EV-initiated suspense of transfer during which the EV is not electrically connected to the EVSE.

A Central System MAY deduce the start and end of an Energy Transfer Period from: the MeterValues that are

sent during the Transaction, the status notifications: Charging, SuspendedEV and/or SuspendedEVSE. etc.

Central System implementations need to take into account factors such as: Some EVs don’t go to state

SuspendedEV: they might continue to trickle charge. Some Charge Point don’t even have a electrical meter.

15

Session Transaction Energy Offer Energy Flow

Charging Session

Charging Session is started when first interaction
with user or EV occurs. This can be a
card swipe, remote start of transaction,
connection of cable and/or EV,
parking bay occupancy detector, etc.

Transaction

Transaction starts at the point that all
conditions for charging are met, for
instance, EV is connected to Charge Point
and user has been authorized.

EnergyOfferPeriod

Energy Offer Period starts when
the EVSE is ready and willing to
supply energy.

EnergyTransferPeriod

Energy is transferred.

During an EnergyOfferPeriod there may
be periods the EV is not charging due to
for instance, warm/full battery or EV
internal smart charging.

EnergyTransferPeriod

Energy is transferred.

EnergyOfferSuspendPeriod

During a transaction, there may be periods
the EnergyOffer to EV is suspended by the
EVSE, for instance due to Smart Charging
or local balancing.

EnergyOfferPeriod

EnergyTransferPeriod

Energy is transferred.

Transaction ends at the point where one of the
preconditions for charging irrevocably becomes
false, for instance when a user swipes to stop
the transaction and the stop is authorized.

Session ends at the point that the station
is available again. No cable plugged,
parking bay free.

Figure 5. OCPP Charging Session and transaction definition

16

3.7. Transaction-related messages

This section is normative.

The Charge Point SHOULD deliver transaction-related messages to the Central System in chronological order as

soon as possible. Transaction-related messages are StartTransaction.req, StopTransaction.req and periodic or

clock-aligned MeterValues.req messages.

When offline, the Charge Point MUST queue any transaction-related messages that it would have sent to the

Central System if the Charge Point had been online.

In the event that a Charge Point has transaction-related messages queued to be sent to the Central System, new

messages that are not transaction-related MAY be delivered immediately without waiting for the queue to be

emptied. It is therefore allowed to send, for example, an Authorize request or a Notifications request before the

transaction-related message queue has been emptied, so that customers are not kept waiting and urgent

notifications are not delayed.

The delivery of new transaction-related messages SHALL wait until the queue has been emptied. This is to

ensure that transaction-related messages are always delivered in chronological order.

When the Central System receives a transaction-related message that was queued on the Charge Point for some

time, the Central System will not be aware that this is a historical message, other than by inference given that

the various timestamps are significantly in the past. It SHOULD process such a message as any other.

3.7.1. Error responses to transaction-related messages

It is permissible for the Charge Point to skip a transaction-related message if and only if the Central System

repeatedly reports a `failure to process the message'. Such a stipulation is necessary, because otherwise the

requirement to deliver every transaction-related message in chronological order would entail that the Charge

Point cannot deliver any transaction-related messages to the Central System after a software bug causes the

Central System not to acknowledge one of the Charge Point’s transaction-related messages.

What kind of response, or failure to respond, constitutes a `failure to process the message' is defined in the

documents OCPP JSON Specification and OCPP SOAP Specification.

The number of times and the interval with which the Charge Point should retry such failed transaction-related

messages MAY be configured using the TransactionMessageAttempts and

TransactionMessageRetryInterval configuration keys.

When the Charge Point encounters a first failure to deliver a certain transaction-related message, it SHOULD

send this message again as long as it keeps resulting in a failure to process the message and it has not yet

encountered as many failures to process the message for this message as specified in its

TransactionMessageAttempts configuration key. Before every retransmission, it SHOULD wait as many

seconds as specified in its TransactionMessageRetryInterval key, multiplied by the number of preceding

transmissions of this same message.

As an example, consider a Charge Point that has the value "3" for the TransactionMessageAttempts

configuration key and the value "60" for the TransactionMessageRetryInterval configuration key. It sends a

StopTransaction message and detects a failure to process the message in the Central System. The Charge Point

17

SHALL wait for 60 seconds, and resend the message. In the case when there is a second failure, the Charge Point

SHALL wait for 120 seconds, before resending the message. If this final attempt fails, the Charge Point SHOULD

discard the message and continue with the next transaction-related message, if there is any.

3.8. Connector numbering

This section is normative.

To enable Central System to be able to address all the connectors of a Charge Point, ConnectorIds MUST always

be numbered in the same way.

Connectors numbering (ConnectorIds) MUST be as follows:

• ID of the first connector MUST be 1

• Additional connectors MUST be sequentially numbered (no numbers may be skipped)

• ConnectorIds MUST never be higher than the total number of connectors of a Charge Point

• For operations intiated by the Central System, ConnectorId 0 is reserved for addressing the entire Charge

Point.

• For operations initiated by the Charge Point (when reporting), ConnectorId 0 is reserved for the Charge

Point main controller.

Example: A Charge Point with 3 connectors: All connectors MUST be numbered with the IDs: 1, 2 and 3. It is

advisable to number the connectors of a Charge Point in a logical way: from left to right, top to bottom

incrementing.

3.9. ID Tokens

This section is normative.

In most cases, IdToken data acquired via local token reader hardware is usually a (4 or 7 byte) UID value of a

physical RFID card, typically represented as 8/14 hexadecimal digit characters.

However, IdTokens sent to Charge Points by Central Systems for remotely initiated charging sessions may

commonly be (single use) virtual transaction authorization codes, or virtual RFID tokens that deliberately use a

non-standard UID format to avoid possible conflict with real UID values.

Also, IdToken data used as ParentIds may often use a shared central account identifier for the ParentId, instead

of a UID of the first/master RFID card of an account.

Therefore, message data elements of the IdToken class (including ParentId) MAY contain any data, subject to the

constraints of the data-type (CiString20Type), that is meaningful to a Central System (e.g. for the purpose of

identifying the initiator of charging activity), and Charge Points MUST NOT make any presumptions as to the

format or content of such data (e.g. by assuming that it is a UID-like value that must be hex characters only

and/or an even number of digits).

18



To promote interoperability, based on common practice to date in the case of IdToken data

representing physical ISO 14443 compatible RFID card UIDs, it is RECOMMENDED that such

UIDs be represented as hex representations of the UID bytes. According to ISO14443-3, byte 0

should come first in the hex string.

3.10. Parent idTag

This section is normative.

A Central System has the ability to treat a set of identity tokens as a “group”, thereby allowing any one token in

the group to start a transaction and for the same token, or another token in the same group, to stop the

transaction. This supports the common use-cases of families or businesses with multiple drivers using one or

more shared electric vehicles on a single recharging contract account.

Tokens (idTags) are grouped for authorization purposes by specifying a common group identifier in the optional

ParentId element in IdTagInfo: two idTags are considered to be in the same group if their ParentId Tags match.



Even though the ParentId has the same nominal data type (IdToken) as an idTag, the value of

this element may not be in the common format of IdTokens and/or may not represent an

actual valid IdToken (e.g. it may be a common shared "account number"): therefore, the

ParentId value SHOULD NOT be used for comparison against a presented Token value (unless

it also occurs as an idTag value).

3.11. Reservations

This section is informative.

Reservation of a Charge Point is possible using the Reserve Now operation. This operation reserves the Charge

Point until a certain expiry time for a specific idTag. A parent idTag may be included in the reservation to support

‘group’ reservations. It is possible to reserve a specific connector on a Charge Point or to reserve any connector

on a Charge Point. A reservation is released when the reserved idTag is used on the reserved connector (when

specified) or on any connector (when unspecified) or when the expiry time is reached or when the reservation is

explicitly canceled.

3.12. Vendor-specific data transfer

This section is informative.

The mechanism of vendor-specific data transfer allows for the exchange of data or messages not standardized

in OCPP . As such, it offers a framework within OCPP for experimental functionality that may find its way into

future OCPP versions. Experimenting can be done without creating new (possibly incompatible) OCPP dialects.

Secondly, it offers a possibility to implement additional functionality agreed upon between specific Central

System and Charge Point vendors.

The operation Vendor Specific Data MAY be initiated either by the Central System or by the Charge Point.

19



Please use with extreme caution and only for optional functionality, since it will impact your

compatibility with other systems that do not make use of this option. We recommend

mentioning the usage explicitly in your documentation and/or communication. Please

consider consulting the Open Charge Alliance before turning to this option to add

functionality.

3.13. Smart Charging

This section is normative.

With Smart Charging a Central System gains the ability to influence the charging power or current of a specific

EV, or the total allowed energy consumption on an entire Charge Point / a group of Charge Points, for instance,

based on a grid connection, energy availability on the gird or the wiring of a building. Influencing the charge

power or current is based on energy transfer limits at specific points in time. Those limits are combined in a

Charging Profile.

3.13.1. Charging profile purposes

A charging profile consists of a charging schedule, which is basically a list of time intervals with their maximum

charge power or current, and some values to specify the time period and recurrence of the schedule.

There are three different types of charging profiles, depending on their purpose:

• ChargePointMaxProfile

In load balancing scenarios, the Charge Point has one or more local charging profiles that limit the power or

current to be shared by all connectors of the Charge Point. The Central System SHALL configure such a profile

with ChargingProfilePurpose set to “ChargePointMaxProfile”. ChargePointMaxProfile can only be set at Charge

Point ConnectorId 0.

• TxDefaultProfile

Default schedules for new transactions MAY be used to impose charging policies. An example could be a policy

that prevents charging during the day. For schedules of this purpose, ChargingProfilePurpose SHALL be set to

TxDefaultProfile.

If TxDefaultProfile is set to ConnectorId 0, the TxDefaultProfile is applicable to all Connectors.

If ConnectorId is set >0, it only applies to that specific connector.

In the event a TxDefaultProfile for connector 0 is installed, and the Central System sends a new profile with ConnectorId

>0, the TxDefaultProfile SHALL be replaced only for that specific connector.

• TxProfile

If a transaction-specific profile with purpose TxProfile is present, it SHALL overrule the default charging profile

with purpose TxDefaultProfile for the duration of the current transaction only. After the transaction is stopped,

the profile SHOULD be deleted. If there is no transaction active on the connector specified in a charging profile

of type TxProfile, then the Charge Point SHALL discard it and return an error status in SetChargingProfile.conf.

20

The final schedule constraints that apply to a transaction are determined by merging the profiles with purposes

ChargePointMaxProfile with the profile TxProfile or the TxDefaultProfile in case no profile of purpose TxProfile is

provided. TxProfile SHALL only be set at Charge Point ConnectorId >0.

3.13.2. Stacking charging profiles

It is allowed to stack charging profiles of the same charging profile purpose in order to describe complex

calendars. For example, one can define a charging profile of purpose TxDefaultProfile with a duration and

recurrence of one week that allows full power or current charging on weekdays from 23:00h to 06:00h and from

00:00h to 24:00h in weekends and reduced power or current charging at other times. On top of that, one can

define other TxDefaultProfiles that define exception to this rule, for example for holidays.

Precedence of charging profiles is determined by the value of their StackLevel parameter. At any point in time

the prevailing charging profile SHALL be the charging profile with the highest stackLevel among the profiles that

are valid at that point in time, as determined by their validFrom and validTo parameters.

To avoid conflicts, the existence of multiple Charging Profiles with the same stackLevel and Purposes in a Charge

Point is not allowed. Whenever a Charge Point receives a Charging Profile with a stackLevel and Purpose that

already exists in the Charge Point, the Charge Point SHALL replace the existing profile.



In the case an updated charging profile (with the same stackLevel and purpose) is sent with a

validFrom dateTime in the future, the Charge Point SHALL replace the installed profile and

SHALL revert to default behavior until validFrom is reached. It is RECOMMENDED to provide a

start time in the past to prevent gaps.


If you use Stacking without a duration, on the highest stack level, the Charge Point will never

fall back to a lower stack level profile.

3.13.3. Combining charging profile purposes

The Composite Schedule that will guide the charging level is a combination of the prevailing Charging Profiles of

the different chargingProfilePurposes.

This Composite Schedule is calculated by taking the minimum value for each time interval. Note that time

intervals do not have to be of fixed length, nor do they have to be the same for every charging profile purpose.

This means that a resulting Composite Schedule MAY contain intervals of different lengths.

At any point in time, the available power or current in the Composite Schedule, which is the result of merging the

schedules of charging profiles ChargePointMaxProfile and TxDefaultProfile (or TxProfile), SHALL be less than or

equal to lowest value of available power or current in any of the merged schedules.

In the case the Charge Point is equipped with more than one Connector, the limit value of

ChargePointMaxProfile is the limit for all connectors combined. The combined energy flow of all connectors

SHALL NOT be greater then the limit set by ChargePointMaxProfile.

21

3.13.4. Smart Charging Use Cases

This section is informative.

There may be many different uses for smart charging. The following three typical kinds of smart charging will be

used to illustrate the possible behavior of smart charging:

• Load balancing

• Central smart charging

• Local smart charging

There are more complex use cases possible in which two or more of the above use cases are combined into one

more complex system.

Load Balancing

This section is informative.

The Load Balancing use case is about internal load balancing within the Charge Point, the Charge Point controls

the charging schedule per connector. The Charge Point is configured with a fixed limit, for example the

maximum current of the connection to the grid.

The optional charging schedule field minChargingRate may be used by the Charge Point to optimize the power

distribution between the connectors. The parameter informs the Charge Point that charging below

minChargingRate is inefficient, giving the possibility to select another balancing strategy.

Charge Point: CP10

Charge Point: CP11

Charge Point
CP10

Connector
1

Connector
2

Charge Point
CP11

Connector
2

Connector
1

Central System

CS sets known physical
grid connections limits.

EV1

EV2

OCPP charging profile

OCPP charging profile

Control Pilot signal

Control Pilot signal

Figure 6. Load balancing Smart Charging topology

Central Smart Charging

This section is informative.

With Central smart charging the constraints on the charging schedule, per transaction, are determined by the

Central System. The Central System uses these schedules to stay within limits imposed by any external system.

22

The Central System directly controls the limits on the connectors of the Charge Points.

Central System

CS receives a capacity
forecast from an external
party (e.g. DSO). Charge Point

CP10

Charge Point
CP11

Charge Point
CP12

EV1

EV2

OCPP charging profile

OCPP charging profile

Control Pilot signal

Control Pilot signal

Figure 7. Central Smart Charging topology

Central smart charging assumes that charge limits are controlled by the Central System. The Central System

receives a capacity forecast from the grid operator (DSO) or another source in one form or another and

calculates charging schedules for some or all charging transactions, details of which are out of scope of this

specification.

The Central System imposes charging limits on connectors. In response to a StartTransaction.req PDU The

Central System may choose to set charging limits to the transaction using the TxProfile

Central Smart Charging can be done with a Control Pilot signal, albeit with some limitations, because an EV

cannot communicate its charging via the Control Pilot signal. In analogy to the Local Smart Charging use case, a

connector can execute a charging schedule by the Control Pilot signal. This is illustrated in the Figure below:

23

User
EV Charge Point Central System

RFID or other Authorization

set max current(limit)

switch power on()

start charging()

StartTransaction.req(connectorId, idTag, meterStart, timestamp, [reservationId])

StartTransaction.conf(idTagInfo, transactionId)

loop Change according to charging profile
[for each interval period in charging profile]

get limit from charging profile():limit
Charge Point implements charging
profile via the Control Pilot
signal whenever maximum current
needs changing.

set max current(limit)

opt [Change of limits by Central System]

SetChargingProfile.req(ConnectorId, ChargingProfileId, [transactionId],
ChargingProfilePurpose: TxProfile , ChargingProfileType, recurrencyKind, ValidFrom,
ValidTo, ChargingSchedule)

Central System decides to
change the charging profile.

SetChargingProfile.conf(Accepted)

RFID or other Authorization

end charging()

switch power off()

StopTransaction.req(meterStop, timestamp,
transactionId, reason, [idTag], [transactionData])

StopTransaction.conf([idTagInfo])

Figure 8. Sequence Diagram: Central Smart Charging

Explanation for the above figure:

• After authorization the connector will set a maximum current to use via the Control Pilot signal. This limit

is based on a (default) charging profile that the connector had previously received from the Central

System. The EV starts charging and a StartTransaction.req is sent to the Central System.

• While charging is in progress the connector will continuously adapt the maximum current or power

according to the charging profile. Optionally, at any point in time the Central System may send a new

charging profile for the connector that shall be used as a limit schedule for the EV.

Local Smart Charging

The Local Smart Charging use case describes a use case in which smart charging enabled Charge Points have

charging limits controlled locally by a Local Controller, not the Central System. The use case for local smart

charging is about limiting the amount of power that can be used by a group of Charge Points, to a certain

maximum. A typical use would be a number of Charge Points in a parking garage where the rating of the

connection to the grid is less than the sum the ratings of the Charge Points. Another application might be that

the Local Controller receives information about the availability of power from a DSO or a local smart grid node.

24

Local group

Local Controller
CP00

Local Controller limits
power usage of total
group to pre-configured
maximum capacity.

Charge Point
CP01

Charge Point
CP02

Charge Point
CP03

EV1

EV2
Central System

OCPP charging profile

OCPP charging profile

Control Pilot signal

Control Pilot signal

OCPP ChargePointMaxProfile

Figure 9. Local Smart Charging topology

Local smart charging assumes the existence of a Local Controller to control a group of Charge Points. The Local

Controller is a logical component. It may be implemented either as a separate physical component or as part of

a ‘master’ Charge Point controlling a number of other Charge Points. The Local Control implements the OCPP

protocol and is a proxy for the group members' OCPP messages, and may or may not have any connectors of its

own.

In the case of local smart charging the Local Controller imposes charging limits on a Charge Point. These limits

may be changed dynamically during the charging process in order to keep the power consumption of the group

of Charge Points within the group limits. The group limits may be pre-configured in the Local Controller or may

have been configured by the Central System.

The optional charging schedule field minChargingRate may be used by the Local Controller to optimize the

power distribution between the connectors. The parameter informs the Local Controller that charging below

minChargingRate is inefficient, giving the possibility to select another balancing strategy.

The following diagram illustrates the sequence of messages to set charging limits on Charge Points in a Local

Smart Charging group. These limits can either be pre-configured in the Local Controller in one way or another, or

they can be set by the Central System. The Local Controller contains the logic to distribute this capacity among

the connected connectors by adjusting their limits as needed.

Charge Point Local Controller CSO Central System

opt Set local group limits

SetChargingProfile.req(connectorId: 0 ,
chargingprofilePurpose: ChargepointMaxProfile ,
chargingProfileKind: absolute , validFrom, validTo)

Limits for local
controller's group may
be preconfigured in
controller or set
dynamically by CSO

SetChargingProfile.conf(Accepted)

SetChargingProfile.req(connectorId: 0 ,
chargingprofilePurpose: ChargepointMaxProfile ,
chargingProfileKind: absolute , validFrom, validTo)

Local Controller assigns
limits to Charge Point

SetChargingProfile.conf(Accepted)

Figure 10. Presetting Local Group Limits

The next diagram describe the sequence of messages for a typical case of Local Smart Charging. For simplicity’s

sake, this case only involves one connector.

25

User
EV Charge Point Local Controller Central System

RFID or other Authorization

set max current(limit)

switch power on()

start charging()

StartTransaction.req(connectorId, idTag, meterStart,
timestamp, [reservationId])

StartTransaction.req(connectorId, idTag, meterStart,
timestamp, [reservationId])

StartTransaction.conf(idTagInfo, transactionId)

StartTransaction.conf(idTagInfo, transactionId)

loop Change according to charging profile
[for each interval period in charging profile]

get limit from charging profile():limit
Charge Point implements charging
profile via the Control Pilot
signal whenever maximum current
needs changing.

set max current(limit)

opt [Change of limits by controller]

SetChargingProfile.req(connectorId, csChargingProfiles) Local Controller decides to
change the charging profile.

SetChargingProfile.conf(Accepted)

RFID or other Authorization

end charging()

switch power off()

StopTransaction.req(meterStop, timestamp,
transactionId, reason, [idTag], [transactionData])

StopTransaction.req(meterStop, timestamp,
transactionId, reason, [idTag], [transactionData])

StopTransaction.conf([idTagInfo])

StopTransaction.conf([idTagInfo])

Figure 11. Sequence Diagram: Local Smart Charging

Explanation for the above figure:

• After authorization the connector will set a maximum current to use, via the Control Pilot signal. This limit

is based on a (default) charging profile that the connector had previously received from the Local

Controller. The EV starts charging and sends a StartTransaction.req.

• The StartTransaction.req is sent to the Central System via the Local Controller, so that also the Local

Controller knows a transaction has started. The Local Controller just passes on the messages between

Charge Point and Central System, so that the Central System can address all the Local Smart Charging

group members individually.

• While charging is in progress the connector will continuously adapt the maximum current according to the

charging profile.

Optionally, at any point in time the Local Controller may send a new charging profile to the connector that

shall be used as a limit schedule for the EV.

3.13.5. Discovery of Charge Point Capabilities

This section is normative.

26

The smart charging options defined can be used in extensive ways. Because of the possible limitations and

differences in capabilities between Charge Points, the Central System needs to be able to discover the Charge

Point specific capabilities. This is ensured by the standardized configuration keys as defined in this chapter. A

Smart Charging enabled Charge Point SHALL implement, and support reporting of, the following configuration

keys through the GetConfiguration.req PDU

SMART CHARGING CONFIGURATION KEYS

ChargeProfileMaxStackLevel

ChargingScheduleAllowedChargingRateUnit

ChargingScheduleMaxPeriods

MaxChargingProfilesInstalled

A full list of all standardized configuration keys can be found in chapter Standard Configuration Key Names &

Values.

3.13.6. Offline behavior of smart charging

This section is normative.

If a Charge Point goes offline after having received a transaction-specific charging profile with purpose TxProfile,

then it SHALL continue to use this profile for the duration of the transaction.

If a Charge Point goes offline before a transaction is started or before a transaction-specific charging profile with

purpose TxProfile was received, then it SHALL use the charging profiles that are available. Zero or more of the

following charging profile purposes MAY have been previously received from the Central System:

*ChargePointMaxProfile

*TxDefaultProfile

See section Combining Charging Profile Purposes for a description on how to combine charging profiles with

different purposes.

If a Charge Point goes offline, without having any charging profiles, then it SHALL execute a transaction as if no

constraints apply.

3.13.7. Example data structure for smart charging

This section is informative

The following data structure describes a daily default profile that limits the power to 6 kW between 08:00h and

20:00h.

27

CHARGINGPROFILE

chargingProfileId 100

stackLevel 0

chargingProfilePurpose TxDefaultProfile

chargingProfileKind Recurring

recurrencyKind Daily

chargingSchedule (List of 1 ChargingSchedule
elements)

ChargingSchedule

duration 86400 (= 24 hours)

startSchedule 2013-01-01T00:00Z

chargingRateUnit W

chargingSchedulePeriod (List of 3
ChargingSchedulePeriod
elements)

ChargingSchedulePeriod

startPeriod 0 (=00:00)

limit 11000

numberPhases 3

startPeriod 28800 (=08:00)

limit 6000

numberPhases 3

startPeriod 72000 (=20:00)

limit 11000

numberPhases 3

28


The amount of phases used during charging is limited by the capabilities of: The Charge Point,

EV and Cable between CP and EV. If any of these 3 is not capable of 3 phase charging, the EV

will be charged using 1 phase only.



Switching the number of used phases during a schedule or charging session should be done

with care. Some EVs may not support this and changing the amount of phases may result in

physical damage. With the configuration key: ConnectorSwitch3to1PhaseSupported The

Charge Point can tell if it supports switching the amount of phases during a transaction.


On days on which DST goes into or out of effect, a special profile might be needed (e.g. for

relative profiles).

3.14. Time zones

This section is informative.

OCPP does not prescribe the use of a specific time zone for time values. However, it is strongly recommended to

use UTC for all time values to improve interoperability between Central Systems and Charge Points.

3.15. Time notations

This section is normative.

Implementations MUST use ISO 8601 date time notation. Message receivers must be able to handle fractional

seconds and time zone offsets (another implementation might use them). Message senders MAY save data

usage by omitting insignificant fractions of seconds.

3.16. Metering Data

This section is normative.

Extensive metering data relating to charging sessions can be recorded and transmitted in different ways

depending on its intended purpose. There are two obvious use cases (but the use of meter values is not limited

to these two):

• Charging Session Meter Values

• Clock-Aligned Meter Values

Both types of meter readings MAY be reported in standalone MeterValues.req messages (during a transaction)

and/or as part of the transactionData element of the StopTransaction.req PDU.

3.16.1. Charging Session Meter Values

Frequent (e.g. 1-5 minute interval) meter readings taken and transmitted (usually in "real time") to the Central

System, to allow it to provide information updates to the EV user (who is usually not at the charge point), via

web, app, SMS, etc., as to the progress of the charging session. In OCPP, this is called "sampled meter data", as

the exact frequency and time of readings is not very significant, as long as it is "frequent enough". "Sampled

meter data" can be configured with the following configuration keys:

29

• MeterValuesSampledData

• MeterValuesSampledDataMaxLength

• MeterValueSampleInterval

• StopTxnSampledData

• StopTxnSampledDataMaxLength

MeterValueSampleInterval is the time (in seconds) between sampling of metering (or other) data, intended

to be transmitted by "MeterValues" PDUs. Samples are acquired and transmitted periodically at this interval

from the start of the charging transaction.

A value of "0" (numeric zero), by convention, is to be interpreted to mean that no sampled data should be

transmitted.

MeterValuesSampledData is a comma separated list that prescribes the set of measurands to be included in a

MeterValues.req PDU, every MeterValueSampleInterval seconds. The maximum amount of elements in the

MeterValuesSampledData list can be reported by the Charge Point via:

MeterValuesSampledDataMaxLength

StopTxnSampledData is a comma separated list that prescribes the sampled measurands to be included in the

TransactionData element of StopTransaction.req PDU, every MeterValueSampleInterval seconds from the

start of the Transaction. The maximum amount of elements in the StopTxnSampledData list can be reported

by the Charge Point via: StopTxnSampledDataMaxLength

3.16.2. Clock-Aligned Meter Values

Grid Operator might require meter readings to be taken from fiscally certified energy meters, at specific Clock

aligned times (usually every quarter hour, or half hour).

"Clock-Aligned Billing Data" can be configured with the following configuration keys:

• ClockAlignedDataInterval

• MeterValuesAlignedData

• MeterValuesAlignedDataMaxLength

• StopTxnAlignedData

• StopTxnAlignedDataMaxLength

ClockAlignedDataInterval is the size of the clock-aligned data interval (in seconds). This defines the set of

evenly spaced meter data aggregation intervals per day, starting at 00:00:00 (midnight).

For example, a value of 900 (15 minutes) indicates that every day should be broken into 96 15-minute intervals.

A value of "0" (numeric zero), by convention, is to be interpreted to mean that no clock-aligned data should be

transmitted.

MeterValuesAlignedData is a comma separated list that prescribes the set of measurands to be included in a

MeterValues.req PDU, every ClockAlignedDataInterval seconds. The maximum amount of elements in the

MeterValuesAlignedData list can be reported by the Charge Point via:

30

MeterValuesAlignedDataMaxLength

StopTxnAlignedData is a comma separated list that prescribes the set of clock-aligned periodic measurands

to be included in the TransactionData element of StopTransaction.req PDU for every

ClockAlignedDataInterval of the Transaction. The maximum amount of elements in the

StopTxnAlignedData list can be reported by the Charge Point via: StopTxnAlignedDataMaxLength

3.16.3. Multiple Locations/Phases

When a Charge Point can measure the same measurand on multiple locations or phases, all possible locations

and/or phases SHALL be reported when configured in one of the relevant configuration keys.

For example: A Charge Point capable of measuring Current.Import on Inlet (all 3 phases) (grid connection) and

Outlet (3 phases per connector on both its connectors). Current.Import is set in MeterValuesSampledData.

MeterValueSampleInterval is set to 300 (seconds). Then the Charge Point should send:

• a MeterValues.req with: connectorId = 0; with 3 SampledValue elements, one per phase with location = Inlet.

• a MeterValues.req with: connectorId = 1; with 3 SampledValue elements, one per phase with location =

Outlet.

• a MeterValues.req with: connectorId = 2; with 3 SampledValue elements, one per phase with location =

Outlet.

3.16.4. Unsupported measurands

When a Central System sends a ChangeConfiguration.req to a Charge Point with one of the following

configuration keys:

• MeterValuesAlignedData

• MeterValuesSampledData

• StopTxnAlignedData

• StopTxnSampledData

If the comma separated list contains one or more measurands that are not supported by this Charge Point, the

Charge Point SHALL respond with: ChangeConfiguration.conf with: status = Rejected. No changes SHALL be made

to the currently configuration.

3.16.5. No metering data in a Stop Transaction

When the configuration keys: StopTxnAlignedData and StopTxnSampledData are set to an empty string, the

Charge Point SHALL not put meter values in a StopTransaction.req PDU.

31

4. Operations Initiated by Charge Point

4.1. Authorize

Charge Point Central System

Authorize.req(idTag)

Authorize.conf(idTagInfo)

Figure 12. Sequence Diagram: Authorize

Before the owner of an electric vehicle can start or stop charging, the Charge Point has to authorize the

operation. The Charge Point SHALL only supply energy after authorization. When stopping a Transaction, the

Charge Point SHALL only send an Authorize.req when the identifier used for stopping the transaction is different

from the identifier that started the transaction.

Authorize.req SHOULD only be used for the authorization of an identifier for charging.

A Charge Point MAY authorize identifier locally without involving the Central System, as described in Local

Authorization List. If an idTag presented by the user is not present in the Local Authorization List or

Authorization Cache, then the Charge Point SHALL send an Authorize.req PDU to the Central System to request

authorization. If the idTag is present in the Local Authorization List or Authorization Cache, then the Charge Point

MAY send an Authorize.req PDU to the Central System.

Upon receipt of an Authorize.req PDU, the Central System SHALL respond with an Authorize.conf PDU. This

response PDU SHALL indicate whether or not the idTag is accepted by the Central System. If the Central System

accepts the idTag then the response PDU MAY include a parentIdTag and MUST include an authorization status

value indicating acceptance or a reason for rejection.

If Charge Point has implemented an Authorization Cache, then upon receipt of an Authorize.conf PDU the

Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List, with the IdTagInfo

value from the response as described under Authorization Cache.

4.2. Boot Notification

Charge Point Central System

BootNotification.req(chargePointModel, chargePointVendor, [chargeBoxSerialNumber],[chargePointSerialNumber],
[firmwareVersion], [iccid], [imsi], [meterSerialNumber], [meterType])

BootNotification.conf(currentTime, interval, status)

Figure 13. Sequence Diagram: Boot Notification

After start-up, a Charge Point SHALL send a request to the Central System with information about its

configuration (e.g. version, vendor, etc.). The Central System SHALL respond to indicate whether it will accept the

Charge Point.

The Charge Point SHALL send a BootNotification.req PDU each time it boots or reboots. Between the physical

power-on/reboot and the successful completion of a BootNotification, where Central System returns Accepted or

Pending, the Charge Point SHALL NOT send any other request to the Central System. This includes cached

32

messages that are still present in the Charge Point from before.

When the Central System responds with a BootNotification.conf with a status Accepted, the Charge Point will

adjust the heartbeat interval in accordance with the interval from the response PDU and it is RECOMMENDED to

synchronize its internal clock with the supplied Central System’s current time. If the Central System returns

something other than Accepted, the value of the interval field indicates the minimum wait time before sending a

next BootNotification request. If that interval value is zero, the Charge Point chooses a waiting interval on its

own, in a way that avoids flooding the Central System with requests. A Charge Point SHOULD NOT send a

BootNotification.req earlier, unless requested to do so with a TriggerMessage.req.

If the Central System returns the status Rejected, the Charge Point SHALL NOT send any OCPP message to the

Central System until the aforementioned retry interval has expired. During this interval the Charge Point may no

longer be reachable from the Central System. It MAY for instance close its communication channel or shut down

its communication hardware. Also the Central System MAY close the communication channel, for instance to

free up system resources. While Rejected, the Charge Point SHALL NOT respond to any Central System initiated

message. the Central System SHOULD NOT initiate any.

The Central System MAY also return a Pending registration status to indicate that it wants to retrieve or set

certain information on the Charge Point before the Central System will accept the Charge Point. If the Central

System returns the Pending status, the communication channel SHOULD NOT be closed by either the Charge

Point or the Central System. The Central System MAY send request messages to retrieve information from the

Charge Point or change its configuration. The Charge Point SHOULD respond to these messages. The Charge

Point SHALL NOT send request messages to the Central System unless it has been instructed by the Central

System to do so with a TriggerMessage.req request.

While in pending state, the following Central System initiated messages are not allowed:

RemoteStartTransaction.req and RemoteStopTransaction.req

4.2.1. Transactions before being accepted by a Central System

A Charge Point Operator MAY choose to configure a Charge Point to accept transactions before the Charge Point

is accepted by a Central System. Parties who want to implement this such behavior should realize that it is

uncertain if those transactions can ever be delivered to the Central System.

After a restart (for instance due to a remote reset command, power outage, firmware update, software error

etc.) the Charge Point MUST again contact the Central System and SHALL send a BootNotification request. If the

Charge Point fails to receive a BootNotification.conf from the Central System, and has no in-built non-volatile

real-time clock hardware that has been correctly preset, the Charge Point may not have a valid date / time

setting, making it impossible to later determine the date / time of transactions.

It might also be the case (e.g. due to configuration error) that the Central System indicates a status other than

Accepted for an extended period of time, or indefinitely.

It is usually advisable to deny all charging services at a Charge Point if the Charge Point has never before been

Accepted by the Central System (using the current connection settings, URL, etc.) since users cannot be

authenticated and running transactions could conflict with provisioning processes.

33

4.3. Data Transfer

Charge Point Central System

DataTransfer.req(vendorId, [messageId], [data])

DataTransfer.conf(status, [data])

Figure 14. Sequence Diagram: Data Transfer

If a Charge Point needs to send information to the Central System for a function not supported by OCPP, it

SHALL use the DataTransfer.req PDU.

The vendorId in the request SHOULD be known to the Central System and uniquely identify the vendor-specific

implementation. The VendorId SHOULD be a value from the reversed DNS namespace, where the top tiers of the

name, when reversed, should correspond to the publicly registered primary DNS name of the Vendor

organisation.

Optionally, the messageId in the request PDU MAY be used to indicate a specific message or implementation.

The length of data in both the request and response PDU is undefined and should be agreed upon by all parties

involved.

If the recipient of the request has no implementation for the specific vendorId it SHALL return a status

‘UnknownVendor’ and the data element SHALL not be present. In case of a messageId mismatch (if used) the

recipient SHALL return status ‘UnknownMessageId’. In all other cases the usage of status ‘Accepted’ or ‘Rejected’

and the data element is part of the vendor-specific agreement between the parties involved.

4.4. Diagnostics Status Notification

Charge Point Central System

DiagnosticsStatusNotification.req(status)

DiagnosticsStatusNotification.conf()

Figure 15. Sequence Diagram: Diagnostics Status Notification

Charge Point sends a notification to inform the Central System about the status of a diagnostics upload. The

Charge Point SHALL send a DiagnosticsStatusNotification.req PDU to inform the Central System that the upload

of diagnostics is busy or has finished successfully or failed. The Charge Point SHALL only send the status Idle

after receipt of a TriggerMessage for a Diagnostics Status Notification, when it is not busy uploading diagnostics.

Upon receipt of a DiagnosticsStatusNotification.req PDU, the Central System SHALL respond with a

DiagnosticsStatusNotification.conf.

4.5. Firmware Status Notification

34

Charge Point Central System

FirmwareStatusNotification.req(status)

FirmwareStatusNotification.conf()

Figure 16. Sequence Diagram: Firmware Status Notification

A Charge Point sends notifications to inform the Central System about the progress of the firmware update. The

Charge Point SHALL send a FirmwareStatusNotification.req PDU for informing the Central System about the

progress of the downloading and installation of a firmware update. The Charge Point SHALL only send the status

Idle after receipt of a TriggerMessage for a Firmware Status Notification, when it is not busy

downloading/installing firmware.

Upon receipt of a FirmwareStatusNotification.req PDU, the Central System SHALL respond with a

FirmwareStatusNotification.conf.

The FirmwareStatusNotification.req PDUs SHALL be sent to keep the Central System updated with the status of

the update process, started by the Central System with a FirmwareUpdate.req PDU.

4.6. Heartbeat

Charge Point Central System

Heartbeat.req()

Heartbeat.conf(currentTime)

Figure 17. Sequence Diagram: Heartbeat

To let the Central System know that a Charge Point is still connected, a Charge Point sends a heartbeat after a

configurable time interval.

The Charge Point SHALL send a Heartbeat.req PDU for ensuring that the Central System knows that a Charge

Point is still alive.

Upon receipt of a Heartbeat.req PDU, the Central System SHALL respond with a Heartbeat.conf. The response

PDU SHALL contain the current time of the Central System, which is RECOMMENDED to be used by the Charge

Point to synchronize its internal clock.

The Charge Point MAY skip sending a Heartbeat.req PDU when another PDU has been sent to the Central

System within the configured heartbeat interval. This implies that a Central System SHOULD assume availability

of a Charge Point whenever a PDU has been received, the same way as it would have, when it received a

Heartbeat.req PDU.


With JSON over WebSocket, sending heartbeats is not mandatory. However, for time

synchronization it is advised to at least send one heartbeat per 24 hour.

4.7. Meter Values

35

Charge Point Central System

MeterValues.req(connectorId, meterValue, [transactionId])

MeterValues.conf()

Figure 18. Sequence Diagram: Meter Values

A Charge Point MAY sample the electrical meter or other sensor/transducer hardware to provide extra

information about its meter values. It is up to the Charge Point to decide when it will send meter values. This can

be configured using the ChangeConfiguration.req message to data acquisition intervals and specify data to be

acquired & reported.

The Charge Point SHALL send a MeterValues.req PDU for offloading meter values. The request PDU SHALL

contain for each sample:

1. The id of the Connector from which samples were taken. If the connectorId is 0, it is associated with the

entire Charge Point. If the connectorId is 0 and the Measurand is energy related, the sample SHOULD be

taken from the main energy meter.

2. The transactionId of the transaction to which these values are related, if applicable. If there is no

transaction in progress or if the values are taken from the main meter, then transaction id may be

omitted.

3. One or more meterValue elements, of type MeterValue, each representing a set of one or more data

values taken at a particular point in time.

Each MeterValue element contains a timestamp and a set of one or more individual sampledvalue elements, all

captured at the same point in time. Each sampledValue element contains a single value datum. The nature of

each sampledValue is determined by the optional measurand, context, location, unit, phase, and format fields.

The optional measurand field specifies the type of value being measured/reported.

The optional context field specifies the reason/event triggering the reading.

The optional location field specifies where the measurement is taken (e.g. Inlet, Outlet).

The optional phase field specifies to which phase or phases of the electric installation the value applies. The

Charging Point SHALL report all phase number dependent values from the electrical meter (or grid connection

when absent) point of view.

 The phase field is not applicable to all Measurands.


Two measurands (Current.Offered and Power.Offered) are available that are strictly speaking no

measured values. They indicate the maximum amount of current/power that is being offered

to the EV and are intended for use in smart charging applications.

For individual connector phase rotation information, the Central System MAY query the

ConnectorPhaseRotation configuration key on the Charging Point via GetConfiguration. The Charge Point

SHALL report the phase rotation in respect to the grid connection. Possible values per connector are:

36

NotApplicable, Unknown, RST, RTS, SRT, STR, TRS and TSR. see section Standard Configuration Key Names &

Values for more information.

The EXPERIMENTAL optional format field specifies whether the data is represented in the normal (default) form

as a simple numeric value ("Raw"), or as “SignedData”, an opaque digitally signed binary data block,

represented as hex data. This experimental field may be deprecated and subsequently removed in later

versions, when a more mature solution alternative is provided.

To retain backward compatibility, the default values of all of the optional fields on a sampledValue element are

such that a value without any additional fields will be interpreted, as a register reading of active import energy

in Wh (Watt-hour) units.

Upon receipt of a MeterValues.req PDU, the Central System SHALL respond with a MeterValues.conf.

It is likely that The Central System applies sanity checks to the data contained in a MeterValues.req it received.

The outcome of such sanity checks SHOULD NOT ever cause the Central System to not respond with a

MeterValues.conf. Failing to respond with a MeterValues.conf will only cause the Charge Point to try the same

message again as specified in Error responses to transaction-related messages.

4.8. Start Transaction

Charge Point Central System

StartTransaction.req(connectorId, idTag, meterStart, timestamp, [reservationId])

StartTransaction.conf(idTagInfo, transactionId)

Figure 19. Sequence Diagram: Start Transaction

The Charge Point SHALL send a StartTransaction.req PDU to the Central System to inform about a transaction

that has been started. If this transaction ends a reservation (see Reserve Now operation), then the

StartTransaction.req MUST contain the reservationId.

Upon receipt of a StartTransaction.req PDU, the Central System SHOULD respond with a StartTransaction.conf

PDU. This response PDU MUST include a transaction id and an authorization status value.

The Central System MUST verify validity of the identifier in the StartTransaction.req PDU, because the identifier

might have been authorized locally by the Charge Point using outdated information. The identifier, for instance,

may have been blocked since it was added to the Charge Point’s Authorization Cache.

If Charge Point has implemented an Authorization Cache, then upon receipt of a StartTransaction.conf PDU the

Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List, with the IdTagInfo

value from the response as described under Authorization Cache.

It is likely that The Central System applies sanity checks to the data contained in a StartTransaction.req it

received. The outcome of such sanity checks SHOULD NOT ever cause the Central System to not respond with a

StartTransaction.conf. Failing to respond with a StartTransaction.conf will only cause the Charge Point to try the

same message again as specified in Error responses to transaction-related messages.

37

4.9. Status Notification

Charge Point Central System

StatusNotification.req(connectorId, errorCode, status, [timestamp], [info], [vendorId], [vendorErrorCode])

StatusNotification.conf()

Figure 20. Sequence Diagram: Status Notification

A Charge Point sends a notification to the Central System to inform the Central System about a status change or

an error within the Charge Point. The following table depicts changes from a previous status (left column) to a

new status (upper row) upon which a Charge Point MAY send a StatusNotification.req PDU to the Central System.


The Occupied state as defined in previous OCPP versions is no longer relevant. The Occupied

state is split into five new statuses: Preparing, Charging, SuspendedEV, SuspendedEVSE and

Finishing.

 EVSE is used in Status Notification instead of Socket or Charge Point for future compatibility.

38

The following table describes which status transitions are possible:

State From \ To:

1

A
va

ila
b

le

2

P
re

p
a

irin
g

3

C
h

a
rg

in
g

4

S
u

sp
e

n
d

e
d

E
V

5

S
u

sp
e

n
d

e
d

E
V

S
E

6

F
in

ish
in

g

7

R
e

se
rve

d

8

U
n

a
va

ila
b

le

9

F
a

u
lte

d

A Available A2 A3 A4 A5 A7 A8 A9

B Preparing B1 B3 B4 B5 B6 B9

C Charging C1 C4 C5 C6 C8 C9

D SuspendedEV D1 D3 D5 D6 D8 D9

E SuspendedEVSE E1 E3 E4 E6 E8 E9

F Finishing F1 F2 F8 F9

G Reserved G1 G2 G8 G9

H Unavailable H1 H2 H3 H4 H5 H9

I Faulted I1 I2 I3 I4 I5 I6 I7 I8


The table above is only applicable to ConnectorId > 0. For ConnectorId 0, only a limited set is

applicable, namely: Available, Unavailable and Faulted.

The next table describes events that may lead to a status change:

DESCRIPTION

A2 Usage is initiated (e.g. insert plug, bay occupancy detection, present idTag, push start button, receipt of a RemoteStartTransaction.req)

A3 Can be possible in a Charge Point without an authorization means

A4 Similar to A3 but the EV does not start charging

A5 Similar to A3 but the EVSE does not allow charging

A7 A Reserve Now message is received that reserves the connector

A8 A Change Availability message is received that sets the connector to Unavailable

39

DESCRIPTION

A9 A fault is detected that prevents further charging operations

B1 Intended usage is ended (e.g. plug removed, bay no longer occupied, second presentation of idTag, time out (configured by the configuration
key: ConnectionTimeOut) on expected user action)

B3 All prerequisites for charging are met and charging process starts

B4 All prerequisites for charging are met but EV does not start charging

B5 All prerequisites for charging are met but EVSE does not allow charging

B6 Timed out. Usage was initiated (e.g. insert plug, bay occupancy detection), but idTag not presented within timeout.

B9 A fault is detected that prevents further charging operations

C1 Charging session ends while no user action is required (e.g. fixed cable was removed on EV side)

C4 Charging stops upon EV request (e.g. S2 is opened)

C5 Charging stops upon EVSE request (e.g. smart charging restriction, transaction is invalidated by the AuthorizationStatus in a
StartTransaction.conf)

C6 Transaction is stopped by user or a Remote Stop Transaction message and further user action is required (e.g. remove cable, leave parking
bay)

C8 Charging session ends, no user action is required and the connector is scheduled to become Unavailable

C9 A fault is detected that prevents further charging operations

D1 Charging session ends while no user action is required

D3 Charging resumes upon request of the EV (e.g. S2 is closed)

D5 Charging is suspended by EVSE (e.g. due to a smart charging restriction)

D6 Transaction is stopped and further user action is required

D8 Charging session ends, no user action is required and the connector is scheduled to become Unavailable

D9 A fault is detected that prevents further charging operations

40

DESCRIPTION

E1 Charging session ends while no user action is required

E3 Charging resumes because the EVSE restriction is lifted

E4 The EVSE restriction is lifted but the EV does not start charging

E6 Transaction is stopped and further user action is required

E8 Charging session ends, no user action is required and the connector is scheduled to become Unavailable

E9 A fault is detected that prevents further charging operations

F1 All user actions completed

F2 User restart charging session (e.g. reconnects cable, presents idTag again), thereby creating a new Transaction

F8 All user actions completed and the connector is scheduled to become Unavailable

F9 A fault is detected that prevents further charging operations

G1 Reservation expires or a Cancel Reservation message is received

G2 Reservation identity is presented

G8 Reservation expires or a Cancel Reservation message is received and the connector is scheduled to become Unavailable

G9 A fault is detected that prevents further charging operations

H1 Connector is set Available by a Change Availability message

H2 Connector is set Available after a user had interacted with the Charge Point

H3 Connector is set Available and no user action is required to start charging

H4 Similar to H3 but the EV does not start charging

H5 Similar to H3 but the EVSE does not allow charging

H9 A fault is detected that prevents further charging operations

41

DESCRIPTION

I1-I8 Fault is resolved and status returns to the pre-fault state



A Charge Point Connector MAY have any of the 9 statuses as shown in the table above. For

ConnectorId 0, only a limited set is applicable, namely: Available, Unavailable and Faulted. The

status of ConnectorId 0 has no direct connection to the status of the individual Connectors

(>0).


If charging is suspended both by the EV and the EVSE, status SuspendedEVSE SHALL have

precedence over status SuspendedEV.



When a Charge Point or a Connector is set to status Unavailable by a Change Availability

command, the 'Unavailable' status MUST be persistent across reboots. The Charge Point MAY

use the Unavailable status internally for other purposes (e.g. while updating firmware or

waiting for an initial Accepted RegistrationStatus).

As the status Occupied has been split into five new statuses (Preparing, Charging, SuspendedEV, SuspendedEVSE

and Finishing), more StatusNotification.req PDUs will be sent from Charge Point to the Central System. For

instance, when a transaction is started, the Connector status would successively change from Preparing to

Charging with a short SuspendedEV and/or SuspendedEVSE inbetween, possibly within a couple of seconds.

To limit the number of transitions, the Charge Point MAY omit sending a StatusNotification.req if it was active for

less time than defined in the optional configuration key MinimumStatusDuration. This way, a Charge Point

MAY choose not to send certain StatusNotification.req PDUs.



A Charge Point manufacturer MAY have implemented a minimal status duration for certain

status transitions separate of the MinimumStatusDuration setting. The time set in

MinimumStatusDuration will be added to this default delay. Setting

MinimumStatusDuration to zero SHALL NOT override the default manufacturer’s minimal

status duration.


Setting a high MinimumStatusDuration time may result in the delayed sending of all

StatusNotifications, since the Charge Point will only send the StatusNotification.req once the

MinimumStatusDuration time is passed.

The Charge Point MAY send a StatusNotification.req PDU to inform the Central System of fault conditions. When

the 'status' field is not Faulted, the condition should be considered a warning since charging operations are still

possible.


ChargePointErrorCode EVCommunicationError SHALL only be used with status Preparing,

SuspendedEV, SuspendedEVSE and Finishing and be treated as warning.

When a Charge Point is configured with StopTransactionOnEVSideDisconnect set to false, a transaction is

running and the EV becomes disconnected on EV side, then a StatusNotification.req with the state: SuspendedEV

42

SHOULD be send to the Central System, with the 'errorCode' field set to: 'NoError'. The Charge Point SHOULD

add additional information in the 'info' field, Notifying the Central System with the reason of suspension: 'EV side

disconnected'. The current transaction is not stopped.

When a Charge Point is configured with StopTransactionOnEVSideDisconnect set to true, a transaction is

running and the EV becomes disconnected on EV side, then a StatusNotification.req with the state: 'Finishing'

SHOULD be send to the Central System, with the 'errorCode' field set to: 'NoError'. The Charge Point SHOULD

add additional information in the 'info' field, Notifying the Central System with the reason of stopping: 'EV side

disconnected'. The current transaction is stopped.

When a Charge Point connects to a Central System after having been offline, it updates the Central System about

its status according to the following rules:

1. The Charge Point SHOULD send a StatusNotification.req PDU with its current status if the status changed

while the Charge Point was offline.

2. The Charge Point MAY send a StatusNotification.req PDU to report an error that occurred while the

Charge Point was offline.

3. The Charge Point SHOULD NOT send StatusNotification.req PDUs for historical status change events that

happened while the Charge Point was offline and that do not inform the Central System of Charge Point

errors or the Charge Point’s current status.

4. The StatusNotification.req messages MUST be sent in the order in which the events that they describe

occurred.

Upon receipt of a StatusNotification.req PDU, the Central System SHALL respond with a StatusNotification.conf

PDU.

4.10. Stop Transaction

Charge Point Central System

StopTransaction.req(meterStop, timestamp,
transactionId, reason, [idTag], [transactionData])

StopTransaction.conf([idTagInfo])

Figure 21. Sequence Diagram: Stop Transaction

When a transaction is stopped, the Charge Point SHALL send a StopTransaction.req PDU, notifying to the Central

System that the transaction has stopped.

A StopTransaction.req PDU MAY contain an optional TransactionData element to provide more details about

transaction usage. The optional TransactionData element is a container for any number of MeterValues, using

the same data structure as the meterValue elements of the MeterValues.req PDU (See section MeterValues)

Upon receipt of a StopTransaction.req PDU, the Central System SHALL respond with a StopTransaction.conf PDU.

43



The Central System cannot prevent a transaction from stopping. It MAY only inform the Charge

Point it has received the StopTransaction.req and MAY send information about the idTag used

to stop the transaction. This information SHOULD be used to update the Authorization Cache,

if implemented.

The idTag in the request PDU MAY be omitted when the Charge Point itself needs to stop the transaction. For

instance, when the Charge Point is requested to reset.

If a transaction is ended in a normal way (e.g. EV-driver presented his identification to stop the transaction), the

Reason element MAY be omitted and the Reason SHOULD be assumed 'Local'. If the transaction is not ended

normally, the Reason SHOULD be set to a correct value. As part of the normal transaction termination, the

Charge Point SHALL unlock the cable (if not permanently attached).

The Charge Point MAY unlock the cable (if not permanently attached) when the cable is disconnected at the EV. If

supported, this functionality is reported and controlled by the configuration key

UnlockConnectorOnEVSideDisconnect.

The Charge Point MAY stop a running transaction when the cable is disconnected at the EV. If supported, this

functionality is reported and controlled by the configuration key StopTransactionOnEVSideDisconnect.

If StopTransactionOnEVSideDisconnect is set to false, the transaction SHALL not be stopped when the cable

is disconnected from the EV. If the EV is reconnected, energy transfer is allowed again. In this case there is no

mechanism to prevent other EVs from charging and disconnecting during that same ongoing transaction. With

UnlockConnectorOnEVSideDisconnect set to false, the Connector SHALL remain locked at the Charge Point

until the user presents the identifier.

By setting StopTransactionOnEVSideDisconnect to true, the transaction SHALL be stopped when the cable

is disconnected from the EV. If the EV is reconnected, energy transfer is not allowed until the transaction is

stopped and a new transaction is started. If UnlockConnectorOnEVSideDisconnect is set to true, also the

Connector on the Charge Point will be unlocked.


If StopTransactionOnEVSideDisconnect is set to false, this SHALL have priority over

UnlockConnectorOnEVSideDisconnect. In other words: cables always remain locked when

the cable is disconnected at EV side when StopTransactionOnEVSideDisconnect is false.


Setting StopTransactionOnEVSideDisconnect to true will prevent sabotage acts to stop

the energy flow by unplugging not locked cables on EV side.

It is likely that The Central System applies sanity checks to the data contained in a StopTransaction.req it

received. The outcome of such sanity checks SHOULD NOT ever cause the Central System to not respond with a

StopTransaction.conf. Failing to respond with a StopTransaction.conf will only cause the Charge Point to try the

same message again as specified in Error responses to transaction-related messages.

If Charge Point has implemented an Authorization Cache, then upon receipt of a StopTransaction.conf PDU the

Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List, with the IdTagInfo

value from the response as described under Authorization Cache.

44

5. Operations Initiated by Central System

5.1. Cancel Reservation

Charge Point Central System

CancelReservation.req(reservationId)

CancelReservation.conf(status)

Figure 22. Sequence Diagram: Cancel Reservation

To cancel a reservation the Central System SHALL send an CancelReservation.req PDU to the Charge Point.

If the Charge Point has a reservation matching the reservationId in the request PDU, it SHALL return status

‘Accepted’. Otherwise it SHALL return ‘Rejected’.

5.2. Change Availability

Charge Point Central System

ChangeAvailability.req(connectorId, type)

ChangeAvailability.conf(status)

Figure 23. Sequence Diagram: Change Availability

Central System can request a Charge Point to change its availability. A Charge Point is considered available

(“operative”) when it is charging or ready for charging. A Charge Point is considered unavailable when it does not

allow any charging. The Central System SHALL send a ChangeAvailability.req PDU for requesting a Charge Point

to change its availability. The Central System can change the availability to available or unavailable.

Upon receipt of a ChangeAvailability.req PDU, the Charge Point SHALL respond with a ChangeAvailability.conf

PDU. The response PDU SHALL indicate whether the Charge Point is able to change to the requested availability

or not. When a transaction is in progress Charge Point SHALL respond with availability status 'Scheduled' to

indicate that it is scheduled to occur after the transaction has finished.

In the event that Central System requests Charge Point to change to a status it is already in, Charge Point SHALL

respond with availability status ‘Accepted’.

When an availability change requested with a ChangeAvailability.req PDU has happened, the Charge Point SHALL

inform Central System of its new availability status with a StatusNotification.req as described there.


In the case the ChangeAvailability.req contains ConnectorId = 0, the status change applies to

the Charge Point and all Connectors.

 Persistent states: for example: Connector set to Unavailable shall persist a reboot.

5.3. Change Configuration

45

Charge Point Central System

ChangeConfiguration.req(key, value)

ChangeConfiguration.conf(status)

Figure 24. Sequence Diagram: Change Configuration

Central System can request a Charge Point to change configuration parameters. To achieve this, Central System

SHALL send a ChangeConfiguration.req. This request contains a key-value pair, where "key" is the name of the

configuration setting to change and "value" contains the new setting for the configuration setting.

Upon receipt of a ChangeConfiguration.req Charge Point SHALL reply with a ChangeConfiguration.conf

indicating whether it was able to apply the change to its configuration. Content of "key" and "value" is not

prescribed. The Charge Point SHALL set the status field in the ChangeConfiguration.conf according to the

following rules:

• If the change was applied successfully, and the change if effective immediately, the Charge Point SHALL

respond with a status 'Accepted'.

• If the change was applied successfully, but a reboot is needed to make it effective, the Charge Point SHALL

respond with status 'RebootRequired'.

• If "key" does not correspond to a configuration setting supported by Charge Point, it SHALL respond with

a status 'NotSupported'.

• If the Charge Point did not set the configuration, and none of the previous statuses applies, the Charge

Point SHALL respond with status 'Rejected'.


Examples of Change Configuration requests to which a Charge Point responds with a

ChangeConfiguration.conf with a status of 'Rejected' are requests with out-of-range values and

requests with values that do not conform to an expected format.

If a key value is defined as a CSL, it MAY be accompanied with a [KeyName]MaxLength key, indicating the max

length of the CSL in items. If this key is not set, a safe value of 1 (one) item SHOULD be assumed.

5.4. Clear Cache

Charge Point Central System

ClearCache.req()

ClearCache.conf(status)

Figure 25. Sequence Diagram: Clear Cache

Central System can request a Charge Point to clear its Authorization Cache. The Central System SHALL send a

ClearCache.req PDU for clearing the Charge Point’s Authorization Cache.

Upon receipt of a ClearCache.req PDU, the Charge Point SHALL respond with a ClearCache.conf PDU. The

response PDU SHALL indicate whether the Charge Point was able to clear its Authorization Cache.

46

5.5. Clear Charging Profile

Charge Point Central System

ClearChargingProfile.req([id], [connectorId], [chargingProfilePurpose], [stackLevel])

ClearChargingProfile.conf(status)

Figure 26. Sequence Diagram: Clear Charging Profile

If the Central System wishes to clear some or all of the charging profiles that were previously sent the Charge

Point, it SHALL use the ClearChargingProfile.req PDU.

The Charge Point SHALL respond with a ClearChargingProfile.conf PDU specifying whether it was able to process

the request.

5.6. Data Transfer

Charge Point Central System

DataTransfer.req(vendorId, [messageId], [data])

DataTransfer.conf(status, [data])

Figure 27. Sequence Diagram: Data Transfer

If the Central System needs to send information to a Charge Point for a function not supported by OCPP, it

SHALL use the DataTransfer.req PDU.

Behaviour of this operation is identical to the Data Transfer operation initiated by the Charge Point. See Data

Transfer for details.

5.7. Get Composite Schedule

Charge Point Central System

GetCompositeSchedule.req(connectorId, duration, [schedulingUnit])

GetCompositeSchedule.req(status, [connectorId], [scheduleStart], [chargingSchedule])

Figure 28. Sequence Diagram: Get Composite Schedule

The Central System MAY request the Charge Point to report the Composite Charging Schedule by sending a

GetCompositeSchedule.req PDU. The reported schedule, in the GetCompositeSchedule.conf PDU, is the result of

the calculation of all active schedules and possible local limits present in the Charge Point. Local Limits might be

taken into account.

Upon receipt of a GetCompositeSchedule.req, the Charge Point SHALL calculate the Composite Charging

Schedule intervals, from the moment the request PDU is received: Time X, up to X + Duration, and send them in

the GetCompositeSchedule.conf PDU to the Central System.

If the ConnectorId in the request is set to '0', the Charge Point SHALL report the total expected power or current

the Charge Point expects to consume from the grid during the requested time period.

47


Please note that the charging schedule sent by the charge point is only indicative for that point

in time. this schedule might change over time due to external causes (for instance, local

balancing based on grid connection capacity is active and one Connector becomes available).

If the Charge Point is not able to report the requested schedule, for instance if the connectorId is unknown, it

SHALL respond with a status Rejected.

5.8. Get Configuration

Charge Point Central System

GetConfiguration.req([key])

GetConfiguration.conf(configurationKey, [unknownKey])

Figure 29. Sequence Diagram: Get Configuration

To retrieve the value of configuration settings, the Central System SHALL send a GetConfiguration.req PDU to the

Charge Point.

If the list of keys in the request PDU is empty or missing (it is optional), the Charge Point SHALL return a list of all

configuration settings in GetConfiguration.conf. Otherwise Charge Point SHALL return a list of recognized keys

and their corresponding values and read-only state. Unrecognized keys SHALL be placed in the response PDU as

part of the optional unknown key list element of GetConfiguration.conf.

The number of configuration keys requested in a single PDU MAY be limited by the Charge Point. This maximum

can be retrieved by reading the configuration key GetConfigurationMaxKeys.

5.9. Get Diagnostics

Charge Point Central System

GetDiagnostics.req(location, [retries]. [retryInterval], [startTime], [stopTime])

GetDiagnostics.conf([fileName])

Uploading diagnostics file...

DiagnosticsStatusNotification.req(status: Uploading)

DiagnosticsStatusNotification.conf()

Uploaded diagnostics file...

DiagnosticsStatusNotification.req(status: Uploaded)

DiagnosticsStatusNotification.conf()

Figure 30. Sequence Diagram: Get Diagnostics

Central System can request a Charge Point for diagnostic information. The Central System SHALL send a

GetDiagnostics.req PDU for getting diagnostic information of a Charge Point with a location where the Charge

Point MUST upload its diagnostic data to and optionally a begin and end time for the requested diagnostic

information.

Upon receipt of a GetDiagnostics.req PDU, and if diagnostics information is available then Charge Point SHALL

48

respond with a GetDiagnostics.conf PDU stating the name of the file containing the diagnostic information that

will be uploaded. Charge Point SHALL upload a single file. Format of the diagnostics file is not prescribed. If no

diagnostics file is available, then GetDiagnostics.conf SHALL NOT contain a file name.

During uploading of a diagnostics file, the Charge Point MUST send DiagnosticsStatusNotification.req PDUs to

keep the Central System updated with the status of the upload process.

5.10. Get Local List Version

Charge Point Central System

GetLocalListVersion.req()

GetLocalListVersion.conf(listVersion)

Figure 31. Sequence Diagram: Get Local List Version

In order to support synchronisation of the Local Authorization List, Central System can request a Charge Point

for the version number of the Local Authorization List. The Central System SHALL send a GetLocalListVersion.req

PDU to request this value.

Upon receipt of a GetLocalListVersion.req PDU Charge Point SHALL respond with a GetLocalListVersion.conf PDU

containing the version number of its Local Authorization List. A version number of 0 (zero) SHALL be used to

indicate that the local authorization list is empty, and a version number of -1 SHALL be used to indicate that the

Charge Point does not support Local Authorization Lists.

5.11. Remote Start Transaction

Charge Point Central System

RemoteStartTransaction.req(idTag, [connectorId], [chargingProfile])

RemoteStartTransaction.conf(status)

Figure 32. Sequence Diagram: Remote Start Transaction

Central System can request a Charge Point to start a transaction by sending a RemoteStartTransaction.req. Upon

receipt, the Charge Point SHALL reply with RemoteStartTransaction.conf and a status indicating whether it has

accepted the request and will attempt to start a transaction.

The effect of the RemoteStartTransaction.req message depends on the value of the

AuthorizeRemoteTxRequests configuration key in the Charge Point.

• If the value of AuthorizeRemoteTxRequests is true, the Charge Point SHALL behave as if in response to

a local action at the Charge Point to start a transaction with the idTag given in the

RemoteStartTransaction.req message. This means that the Charge Point will first try to authorize the

idTag, using the Local Authorization List, Authorization Cache and/or an Authorize.req request. A

transaction will only be started after authorization was obtained.

• If the value of AuthorizeRemoteTxRequests is false, the Charge Point SHALL immediately try to start a

transaction for the idTag given in the RemoteStartTransaction.req message. Note that after the

49

transaction has been started, the Charge Point will send a StartTransaction request to the Central System,

and the Central System will check the authorization status of the idTag when processing this

StartTransaction request.

The following typical use cases are the reason for Remote Start Transaction:

• Enable a CPO operator to help an EV driver that has problems starting a transaction.

• Enable mobile apps to control charging transactions via the Central System.

• Enable the use of SMS to control charging transactions via the Central System.

The RemoteStartTransaction.req SHALL contain an identifier (idTag), which Charge Point SHALL use, if it is able to

start a transaction, to send a StartTransaction.req to Central System. The transaction is started in the same way

as described in StartTransaction. The RemoteStartTransaction.req MAY contain a connector id if the transaction

is to be started on a specific connector. When no connector id is provided, the Charge Point is in control of the

connector selection. A Charge Point MAY reject a RemoteStartTransaction.req without a connector id.

The Central System MAY include a ChargingProfile in the RemoteStartTransaction request. The purpose of this

ChargingProfile SHALL be set to TxProfile. If accepted, the Charge Point SHALL use this ChargingProfile for the

transaction.


If a Charge Point without support for Smart Charging receives a RemoteStartTransaction.req

with a Charging Profile, this parameter SHOULD be ignored.

5.12. Remote Stop Transaction

Charge Point Central System

RemoteStopTransaction.req(transactionId)

RemoteStopTransaction.conf(status)

Figure 33. Sequence Diagram: Remote Stop Transaction

Central System can request a Charge Point to stop a transaction by sending a RemoteStopTransaction.req to

Charge Point with the identifier of the transaction. Charge Point SHALL reply with RemoteStopTransaction.conf

and a status indicating whether it has accepted the request and a transaction with the given transactionId is

ongoing and will be stopped.

This remote request to stop a transaction is equal to a local action to stop a transaction. Therefore, the

transaction SHALL be stopped, The Charge Point SHALL send a StopTransaction.req and, if applicable, unlock the

connector.

The following two main use cases are the reason for Remote Stop Transaction:

• Enable a CPO operator to help an EV driver that has problems stopping a transaction.

• Enable mobile apps to control charging transactions via the Central System.

50

5.13. Reserve Now

Charge Point Central System

ReserveNow.req(connectorId, expiryDate, idTag, reservationId, [parentIdTag])

ReserveNow.conf(status)

Figure 34. Sequence Diagram: Reserve Now

A Central System can issue a ReserveNow.req to a Charge Point to reserve a connector for use by a specific

idTag.

To request a reservation the Central System SHALL send a ReserveNow.req PDU to a Charge Point. The Central

System MAY specify a connector to be reserved. Upon receipt of a ReserveNow.req PDU, the Charge Point SHALL

respond with a ReserveNow.conf PDU.

If the reservationId in the request matches a reservation in the Charge Point, then the Charge Point SHALL

replace that reservation with the new reservation in the request.

If the reservationId does not match any reservation in the Charge Point, then the Charge Point SHALL return the

status value ‘Accepted’ if it succeeds in reserving a connector. The Charge Point SHALL return ‘Occupied’ if the

Charge Point or the specified connector are occupied. The Charge Point SHALL also return ‘Occupied’ when the

Charge Point or connector has been reserved for the same or another idTag. The Charge Point SHALL return

‘Faulted’ if the Charge Point or the connector are in the Faulted state. The Charge Point SHALL return

‘Unavailable’ if the Charge Point or connector are in the Unavailable state. The Charge Point SHALL return

‘Rejected’ if it is configured not to accept reservations.

If the Charge Point accepts the reservation request, then it SHALL refuse charging for all incoming idTags on the

reserved connector, except when the incoming idTag or the parent idTag match the idTag or parent idTag of the

reservation.

When the configuration key: ReserveConnectorZeroSupported is set to true the Charge Point supports

reservations on connector 0. If the connectorId in the reservation request is 0, then the Charge Point SHALL NOT

reserve a specific connector, but SHALL make sure that at any time during the validity of the reservation, one

connector remains available for the reserved idTag. If the configuration key:

ReserveConnectorZeroSupported is not set or set to false, the Charge Point SHALL return ‘Rejected’

If the parent idTag in the reservation has a value (it is optional), then in order to determine the parent idTag that

is associated with an incoming idTag, the Charge Point MAY look it up in its Local Authorization List or

Authorization Cache. If it is not found in the Local Authorization List or Authorization Cache, then the Charge

Point SHALL send an Authorize.req for the incoming idTag to the Central System. The Authorize.conf response

MAY contain the parent-id.

A reservation SHALL be terminated on the Charge Point when either (1) a transaction is started for the reserved

idTag or parent idTag and on the reserved connector or any connector when the reserved connectorId is 0, or (2)

when the time specified in expiryDate is reached, or (3) when the Charge Point or connector are set to Faulted or

Unavailable.

51

If a transaction for the reserved idTag is started, then Charge Point SHALL send the reservationId in the

StartTransaction.req PDU (see Start Transaction) to notify the Central System that the reservation is terminated.

When a reservation expires, the Charge Point SHALL terminate the reservation and make the connector

available. The Charge Point SHALL send a status notification to notify the Central System that the reserved

connector is now available.

If Charge Point has implemented an Authorization Cache, then upon receipt of a ReserveNow.conf PDU the

Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List, with the IdTagInfo

value from the response as described under Authorization Cache.


It is RECOMMENDED to validate the Identifier with an authorize.req after reception of a

ReserveNow.req and before the start of the transaction.

5.14. Reset

Charge Point Central System

Reset.req(type)

Reset.conf(status)

Figure 35. Sequence Diagram: Reset

The Central System SHALL send a Reset.req PDU for requesting a Charge Point to reset itself. The Central System

can request a hard or a soft reset. Upon receipt of a Reset.req PDU, the Charge Point SHALL respond with a

Reset.conf PDU. The response PDU SHALL include whether the Charge Point will attempt to reset itself.

After receipt of a Reset.req, The Charge Point SHALL send a StopTransaction.req for any ongoing transaction

before performing the reset. If the Charge Point fails to receive a StopTransaction.conf form the Central System,

it shall queue the StopTransaction.req.

At receipt of a soft reset, the Charge Point SHALL stop ongoing transactions gracefully and send

StopTransaction.req for every ongoing transaction. It should then restart the application software (if possible,

otherwise restart the processor/controller).

At receipt of a hard reset the Charge Point SHALL restart (all) the hardware, it is not required to gracefully stop

ongoing transaction. If possible the Charge Point sends a StopTransaction.req for previously ongoing

transactions after having restarted and having been accepted by the Central System via a BootNotification.conf.

This is a last resort solution for a not correctly functioning Charge Points, by sending a "hard" reset, (queued)

information might get lost.

 Persistent states: for example: Connector set to Unavailable shall persist.

5.15. Send Local List

52

Charge Point Central System

SendLocalList.req(listVersion, updateType, [localAuthorisationList])

SendLocalList.conf(status)

Figure 36. Sequence Diagram: Send Local List

Central System can send a Local Authorization List that a Charge Point can use for authorization of idTags. The

list MAY be either a full list to replace the current list in the Charge Point or it MAY be a differential list with

updates to be applied to the current list in the Charge Point.

The Central System SHALL send a SendLocalList.req PDU to send the list to a Charge Point. The

SendLocalList.req PDU SHALL contain the type of update (full or differential) and the version number that the

Charge Point MUST associate with the local authorization list after it has been updated.

Upon receipt of a SendLocalList.req PDU, the Charge Point SHALL respond with a SendLocalList.conf PDU. The

response PDU SHALL indicate whether the Charge Point has accepted the update of the local authorization list. If

the status is Failed or VersionMismatch and the updateType was Differential, then Central System SHOULD retry

sending the full local authorization list with updateType Full.

5.16. Set Charging Profile

Charge Point Central System

alt [at start of transaction]

StartTransaction.req(connectorId, idTag, meterStart, timestamp [reservationId])

StartTransaction.conf(idTagInfo, transactionId)

SetChargingProfile.req(ConnectorId, csChargingProfiles)

SetChargingProfile.conf(status)

[otherwise]

SetChargingProfile.req(ConnectorId, csChargingProfiles)

SetChargingProfile.conf(status)

Figure 37. Sequence Diagram: Set Charging Profile

A Central System can send a SetChargingProfile.req to a Charge Point, to set a charging profile, in the following

situations:

• At the start of a transaction to set the charging profile for the transaction;

• In a RemoteStartTransaction.req sent to a Charge Point

• During a transaction to change the active profile for the transaction;

• Outside the context of a transaction as a separate message to set a charging profile to a local controller,

Charge Point, or a default charging profile to a connector.

53


To prevent mismatch between transactions and a TxProfile, The Central System SHALL include

the transactionId in a SetChargingProfile.req if the profile applies to a specific transaction.

These situations are described below.

5.16.1. Setting a charging profile at start of transaction

If the Central System receives a StartTransaction.req the Central System SHALL respond with a

StartTransaction.conf. If there is a need for a charging profile, The Central System MAY choose to send a

SetChargingProfile.req to the Charge Point.

It is RECOMMENDED to check the timestamp in the StartTransaction.req PDU prior to sending a charging profile

to check if the transaction is likely to be still ongoing. The StartTransaction.req might have been cached during

an offline period.

5.16.2. Setting a charge profile in a RemoteStartTransaction request

The Central System MAY include a charging profile in a RemoteStartTransaction request.

If the Central System includes a ChargingProfile, the ChargingProfilePurpose MUST be set to TxProfile and the

transactionId SHALL NOT be set.



The Charge Point SHALL apply the given profile to the newly started transaction. This

transaction will get a transactionId assigned by Central System via a StartTransaction.conf.

When the Charge Point receives a SetChargingProfile.req, with the transactionId for this

transaction, with the same StackLevel as the profile given in the RemoteStartTransaction.req,

the Charge Point SHALL replace the existing charging profile, otherwise it SHALL install/stack

the profile next to the already existing profile(s).

5.16.3. Setting a charging profile during a transaction.

The Central System MAY send a charging profile to a Charge Point to update the charging profile for that

transaction. The Central System SHALL use the SetChargingProfile.req PDU for that purpose. If a charging profile

with the same chargingProfileId, or the same combination of stackLevel / ChargingProfilePurpose, exists on the

Charge Point, the new charging profile SHALL replace the existing charging profile, otherwise it SHALL be added.

The Charge Point SHALL then re-evaluate its collection of charge profiles to determine which charging profile will

become active. In order to ensure that the updated charging profile applies only to the current transaction, the

chargingProfilePurpose of the ChargingProfile MUST be set to TxProfile. (See section: Charging Profile Purposes)

5.16.4. Setting a charging profile outside of a transaction

The Central System MAY send charging profiles to a Charge Point that are to be used as default charging profiles.

The Central System SHALL use the SetChargingProfile.req PDU for that purpose. Such charging profiles MAY be

sent at any time. If a charging profile with the same chargingProfileId, or the same combination of stackLevel /

ChargingProfilePurpose, exists on the Charge Point, the new charging profile SHALL replace the existing charging

profile, otherwise it SHALL be added. The Charge Point SHALL then re-evaluate its collection of charge profiles to

determine which charging profile will become active.

54


It is not possible to set a ChargingProfile with purpose set to TxProfile without presence of an

active transaction, or in advance of a transaction.



When a ChargingProfile is refreshed during execution, it is advised to put the startSchedule of

the new ChargingProfile in the past, so there is no period of default charging behaviour

inbetween the ChargingProfiles. The Charge Point SHALL continue to execute the existing

ChargingProfile until the new ChargingProfile is installed.


If the chargingSchedulePeriod is longer than duration, the remainder periods SHALL not be

executed. If duration is longer than the chargingSchedulePeriod, the Charge Point SHALL keep

the value of the last chargingSchedulePeriod until duration has ended.


When recurrencyKind is used in combination with a chargingSchedulePeriod and/or duration

that is longer then the recurrence period duration, the remainder periods SHALL not be

executed.


The StartSchedule of the first chargingSchedulePeriod in a chargingSchedule SHALL always be

0.



When recurrencyKind is used in combination with a chargingSchedule duration shorter than

the recurrencyKind period, the Charge Point SHALL fall back to default behaviour after the

chargingSchedule duration ends. This fall back means that the Charge Point SHALL use a

ChargingProfile with a lower stackLevel if available. If no other ChargingProfile is available, the

Charge Point SHALL allow charging as if no ChargingProfile is installed. If the

chargingSchedulePeriod and/or duration is longer then the recurrence period duration, the

remainder periods SHALL not be executed.

5.17. Trigger Message

Charge Point Central System

TriggerMessage.req(requestedMessage, [connectorId])

TriggerMessage.conf(status)

Figure 38. Sequence Diagram: Trigger Message

During normal operation, the Charge Point informs the Central System of its state and any relevant occurrences.

If there is nothing to report the Charge Point will send at least a heartBeat at a predefined interval. Under

normal circumstances this is just fine, but what if the Central System has (whatever) reason to doubt the last

known state? What can a Central System do if a firmware update is in progress and the last status notification it

received about it was much longer ago than could reasonably be expected? The same can be asked for the

progress of a diagnostics request. The problem in these situations is not that the information needed isn’t

covered by existing messages, the problem is strictly a timing issue. The Charge Point has the information, but

has no way of knowing that the Central System would like an update.

The TriggerMessage.req makes it possible for the Central System, to request the Charge Point, to send Charge

55

Point-initiated messages. In the request the Central System indicates which message it wishes to receive. For

every such requested message the Central System MAY optionally indicate to which connector this request

applies. The requested message is leading: if the specified connectorId is not relevant to the message, it should

be ignored. In such cases the requested message should still be sent.

Inversely, if the connectorId is relevant but absent, this should be interpreted as “for all allowed connectorId

values”. For example, a request for a statusNotification for connectorId 0 is a request for the status of the

Charge Point. A request for a statusNotification without connectorId is a request for multiple statusNotifications:

the notification for the Charge Point itself and a notification for each of its connectors.

Charge Point Central System

TriggerMessage.req(RequestedMessage: StatusNotification , ConnectorId: 1)

TriggerMessage.conf(Status: Accepted)

StatusNotification.req(ConnectorId: 1, errorCode: NoError, Status: Charging)

StatusNotification.conf()

Figure 39. Sequence Diagram: Trigger Message StatusNotification Example

The Charge Point SHALL first send the TriggerMessage response, before sending the requested message. In the

TriggerMessage.conf the Charge Point SHALL indicate whether it will send it or not, by returning ACCEPTED or

REJECTED. It is up to the Charge Point if it accepts or rejects the request to send. If the requested message is

unknown or not implemented the Charge Point SHALL return NOT_IMPLEMENTED.

Messages that the Charge Point marks as accepted SHOULD be sent. The situation could occur that, between

accepting the request and actually sending the requested message, that same message gets sent because of

normal operations. In such cases the message just sent MAY be considered as complying with the request.

The TriggerMessage mechanism is not intended to retrieve historic data. The messages it triggers should only

give current information. A MeterValues.req message triggered in this way for instance SHALL return the most

recent measurements for all measurands configured in configuration key MeterValuesSampledData.

StartTransaction and StopTransaction have been left out of this mechanism because they are not state related,

but by their nature describe a transition.

5.18. Unlock Connector

Charge Point Central System

UnlockConnector.req(connectorId)

UnlockConnector.conf(status)

Figure 40. Sequence Diagram: Unlock Connector

Central System can request a Charge Point to unlock a connector. To do so, the Central System SHALL send an

UnlockConnector.req PDU.

The purpose of this message: Help EV drivers that have problems unplugging their cable from the Charge Point

in case of malfunction of the Connector cable retention. When a EV driver calls the CPO help-desk, an operator

could manually trigger the sending of an UnlockConnector.req to the Charge Point, forcing a new attempt to

unlock the connector. Hopefully this time the connector unlocks and the EV driver can unplug the cable and

drive away.

56

The UnlockConnector.req SHOULD NOT be used to remotely stop a running transaction, use the Remote Stop

Transaction instead.

Upon receipt of an UnlockConnector.req PDU, the Charge Point SHALL respond with a UnlockConnector.conf

PDU. The response PDU SHALL indicate whether the Charge Point was able to unlock its connector.

If there was a transaction in progress on the specific connector, then Charge Point SHALL finish the transaction

first as described in Stop Transaction.


UnlockConnector.req is intented only for unlocking the cable retention lock on the Connector,

not for unlocking a connector access door.

5.19. Update Firmware

57

Charge Point Central System

UpdateFirmware.req(location, retrieveDate, [retries], [retryInterval])

UpdateFirmware.conf()

Waiting for retrieveDate...

FirmwareStatusNotification.req(status: Downloading)

FirmwareStatusNotification.conf()

Downloading...

FirmwareStatusNotification.req(status: Downloaded)

FirmwareStatusNotification.conf()

Waiting for transactions to finish...

FirmwareStatusNotification.req(status: Installing)

FirmwareStatusNotification.conf()

Installing...

alt [automatic reboot after firmware update]

Reboot

BootNotification.req(chargePointModel, chargePointVendor, [chargeBoxSerialNumber],
[chargePointSerialNumber], [firmwareVersion], [iccid], [imsi], [meterSerialNumber],
[meterType])

BootNotification.conf(currentTime, heartbeatInterval, status)

FirmwareStatusNotification.req(status: Installed)

FirmwareStatusNotification.conf()

[manual reboot after firmware update]

FirmwareStatusNotification.req(status: Installed)

FirmwareStatusNotification.conf()

Reset.req(Hard)

Reset.conf()

Reboot

BootNotification.req(chargePointModel, chargePointVendor, [chargeBoxSerialNumber],
[chargePointSerialNumber], [firmwareVersion], [iccid], [imsi], [meterSerialNumber],
[meterType])

BootNotification.conf(currentTime, heartbeatInterval, status)

Figure 41. Sequence Diagram: Update Firmware

Central System can notify a Charge Point that it needs to update its firmware. The Central System SHALL send an

UpdateFirmware.req PDU to instruct the Charge Point to install new firmware. The PDU SHALL contain a date

and time after which the Charge Point is allowed to retrieve the new firmware and the location from which the

firmware can be downloaded.

Upon receipt of an UpdateFirmware.req PDU, the Charge Point SHALL respond with a UpdateFirmware.conf

PDU. The Charge Point SHOULD start retrieving the firmware as soon as possible after retrieve-date.

58

During downloading and installation of the firmware, the Charge Point MUST send

FirmwareStatusNotification.req PDUs to keep the Central System updated with the status of the update process.

The Charge Point SHALL, if the new firmware image is "valid", install the new firmware as soon as it is able to.

If it is not possible to continue charging during installation of firmware, it is RECOMMENDED to wait until

Charging Session has ended (Charge Point idle) before commencing installation. It is RECOMMENDED to set

connectors that are not in use to UNAVAILABLE while the Charge Point waits for the Session to end.


The sequence diagram above is an example. It is good practice to first reboot the Charge Point

to check the new firmware is booting and able to connect to the Central System, before

sending the status: Installed. This is not a requirement.

59

6. Messages

6.1. Authorize.req

This contains the field definition of the Authorize.req PDU sent by the Charge Point to the Central System. See

also Authorize

FIELD NAME FIELD TYPE CARD. DESCRIPTION

idTag IdToken 1..1 Required. This contains the identifier that needs to be authorized.

6.2. Authorize.conf

This contains the field definition of the Authorize.conf PDU sent by the Central System to the Charge Point in

response to a Authorize.req PDU. See also Authorize

FIELD NAME FIELD TYPE CARD. DESCRIPTION

idTagInfo IdTagInfo 1..1 Required. This contains information about authorization status, expiry and
parent id.

6.3. BootNotification.req

This contains the field definition of the BootNotification.req PDU sent by the Charge Point to the Central System.

See also Boot Notification

FIELD NAME FIELD TYPE CARD. DESCRIPTION

chargeBoxSerialNumber CiString25Type 0..1 Optional. This contains a value that identifies the serial number of
the Charge Box inside the Charge Point. Deprecated, will be
removed in future version

chargePointModel CiString20Type 1..1 Required. This contains a value that identifies the model of the
ChargePoint.

chargePointSerialNumber CiString25Type 0..1 Optional. This contains a value that identifies the serial number of
the Charge Point.

chargePointVendor CiString20Type 1..1 Required. This contains a value that identifies the vendor of the
ChargePoint.

firmwareVersion CiString50Type 0..1 Optional. This contains the firmware version of the Charge Point.

iccid CiString20Type 0..1 Optional. This contains the ICCID of the modem’s SIM card.

imsi CiString20Type 0..1 Optional. This contains the IMSI of the modem’s SIM card.

meterSerialNumber CiString25Type 0..1 Optional. This contains the serial number of the main electrical
meter of the Charge Point.

60

FIELD NAME FIELD TYPE CARD. DESCRIPTION

meterType CiString25Type 0..1 Optional. This contains the type of the main electrical meter of
the Charge Point.

6.4. BootNotification.conf

This contains the field definition of the BootNotification.conf PDU sent by the Central System to the Charge Point

in response to a BootNotification.req PDU. See also Boot Notification

FIELD NAME FIELD TYPE CARD. DESCRIPTION

currentTime dateTime 1..1 Required. This contains the Central System’s current time.

interval integer 1..1 Required. When RegistrationStatus is Accepted, this contains the heartbeat
interval in seconds. If the Central System returns something other than
Accepted, the value of the interval field indicates the minimum wait time before
sending a next BootNotification request.

status RegistrationStatus 1..1 Required. This contains whether the Charge Point has been registered within the
System Central.

6.5. CancelReservation.req

This contains the field definition of the CancelReservation.req PDU sent by the Central System to the Charge

Point. See also Cancel Reservation

FIELD NAME FIELD TYPE CARD. DESCRIPTION

reservationId integer 1..1 Required. Id of the reservation to cancel.

6.6. CancelReservation.conf

This contains the field definition of the CancelReservation.conf PDU sent by the Charge Point to the Central

System in response to a CancelReservation.req PDU. See also Cancel Reservation

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status CancelReservationStatus 1..1 Required. This indicates the success or failure of the cancelling of
a reservation by Central System.

6.7. ChangeAvailability.req

This contains the field definition of the ChangeAvailability.req PDU sent by the Central System to the Charge

Point. See also Change Availability

61

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer
connectorId >= 0

1..1 Required. The id of the connector for which availability needs to change. Id '0'
(zero) is used if the availability of the Charge Point and all its connectors needs
to change.

type AvailabilityType 1..1 Required. This contains the type of availability change that the Charge Point
should perform.

6.8. ChangeAvailability.conf

This contains the field definition of the ChangeAvailability.conf PDU return by Charge Point to Central System.

See also Change Availability

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status AvailabilityStatus 1..1 Required. This indicates whether the Charge Point is able to perform the
availability change.

6.9. ChangeConfiguration.req

This contains the field definition of the ChangeConfiguration.req PDU sent by Central System to Charge Point. It

is RECOMMENDED that the content and meaning of the 'key' and 'value' fields is agreed upon between Charge

Point and Central System. See also Change Configuration

FIELD NAME FIELD TYPE CARD. DESCRIPTION

key CiString50Type 1..1 Required. The name of the configuration setting to change.

See for standard configuration key names and associated values

value CiString500Type 1..1 Required. The new value as string for the setting.

See for standard configuration key names and associated values

6.10. ChangeConfiguration.conf

This contains the field definition of the ChangeConfiguration.conf PDU returned from Charge Point to Central

System. See also Change Configuration

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status ConfigurationStatus 1..1 Required. Returns whether configuration change has been accepted.

6.11. ClearCache.req

This contains the field definition of the ClearCache.req PDU sent by the Central System to the Charge Point. See

also Clear Cache

No fields are defined.

62

6.12. ClearCache.conf

This contains the field definition of the ClearCache.conf PDU sent by the Charge Point to the Central System in

response to a ClearCache.req PDU. See also Clear Cache

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status ClearCacheStatus 1..1 Required. Accepted if the Charge Point has executed the request, otherwise
rejected.

6.13. ClearChargingProfile.req

This contains the field definition of the ClearChargingProfile.req PDU sent by the Central System to the Charge

Point.

The Central System can use this message to clear (remove) either a specific charging profile (denoted by id) or a

selection of charging profiles that match with the values of the optional connectorId, stackLevel and

chargingProfilePurpose fields. See also Clear Charging Profile

FIELD NAME FIELD TYPE CARD. DESCRIPTION

id integer 0..1 Optional. The ID of the charging profile to clear.

connectorId integer 0..1 Optional. Specifies the ID of the connector for which to clear
charging profiles. A connectorId of zero (0) specifies the charging
profile for the overall Charge Point. Absence of this parameter
means the clearing applies to all charging profiles that match the
other criteria in the request.

chargingProfilePurpose ChargingProfilePurposeType 0..1 Optional. Specifies to purpose of the charging profiles that will be
cleared, if they meet the other criteria in the request.

stackLevel integer 0..1 Optional. specifies the stackLevel for which charging profiles will
be cleared, if they meet the other criteria in the request

6.14. ClearChargingProfile.conf

This contains the field definition of the ClearChargingProfile.conf PDU sent by the Charge Point to the Central

System in response to a ClearChargingProfile.req PDU. See also Clear Charging Profile

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status ClearChargingProfileStatus 1..1 Required. Indicates if the Charge Point was able to execute the
request.

6.15. DataTransfer.req

This contains the field definition of the DataTransfer.req PDU sent either by the Central System to the Charge

Point or vice versa. See also Data Transfer

63

FIELD NAME FIELD TYPE CARD. DESCRIPTION

vendorId CiString255Type 1..1 Required. This identifies the Vendor specific implementation

messageId CiString50Type 0..1 Optional. Additional identification field

data Text
Length undefined

0..1 Optional. Data without specified length or format.

6.16. DataTransfer.conf

This contains the field definition of the DataTransfer.conf PDU sent by the Charge Point to the Central System or

vice versa in response to a DataTransfer.req PDU. See also Data Transfer

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status DataTransferStatus 1..1 Required. This indicates the success or failure of the data transfer.

data Text
Length undefined

0..1 Optional. Data in response to request.

6.17. DiagnosticsStatusNotification.req

This contains the field definition of the DiagnosticsStatusNotification.req PDU sent by the Charge Point to the

Central System. See also Diagnostics Status Notification

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status DiagnosticsStatus 1..1 Required. This contains the status of the diagnostics upload.

6.18. DiagnosticsStatusNotification.conf

This contains the field definition of the DiagnosticsStatusNotification.conf PDU sent by the Central System to the

Charge Point in response to a DiagnosticsStatusNotification.req PDU. See also Diagnostics Status Notification

No fields are defined.

6.19. FirmwareStatusNotification.req

This contains the field definition of the FirmwareStatusNotifitacion.req PDU sent by the Charge Point to the

Central System. See also Firmware Status Notification

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status FirmwareStatus 1..1 Required. This contains the progress status of the firmware installation.

64

6.20. FirmwareStatusNotification.conf

This contains the field definition of the FirmwareStatusNotification.conf PDU sent by the Central System to the

Charge Point in response to a FirmwareStatusNotification.req PDU. See also Firmware Status Notification

No fields are defined.

6.21. GetCompositeSchedule.req

This contains the field definition of the GetCompositeSchedule.req PDU sent by the Central System to the

Charge Point. See also Get Composite Schedule

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer 1..1 Required. The ID of the Connector for which the schedule is
requested. When ConnectorId=0, the Charge Point will calculate
the expected consumption for the grid connection.

duration integer 1..1 Required. Time in seconds. length of requested schedule

chargingRateUnit ChargingRateUnitType 0..1 Optional. Can be used to force a power or current profile

6.22. GetCompositeSchedule.conf

This contains the field definition of the GetCompositeSchedule.conf PDU sent by the Charge Point to the Central

System in response to a GetCompositeSchedule.req PDU. See also Get Composite Schedule

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status GetCompositeScheduleStatus 1..1 Required. Status of the request. The Charge Point will indicate if it
was able to process the request

connectorId integer 0..1 Optional. The charging schedule contained in this notification
applies to a Connector.

scheduleStart dateTime 0..1 Optional. Time. Periods contained in the charging profile are
relative to this point in time.
If status is "Rejected", this field may be absent.

chargingSchedule ChargingSchedule 0..1 Optional. Planned Composite Charging Schedule, the energy
consumption over time. Always relative to ScheduleStart.
If status is "Rejected", this field may be absent.

6.23. GetConfiguration.req

This contains the field definition of the GetConfiguration.req PDU sent by the Central System to the Charge

Point. See also Get Configuration

FIELD NAME FIELD TYPE CARD. DESCRIPTION

key CiString50Type 0..* Optional. List of keys for which the configuration value is requested.

65

6.24. GetConfiguration.conf

This contains the field definition of the GetConfiguration.conf PDU sent by Charge Point the to the Central

System in response to a GetConfiguration.req. See also Get Configuration

FIELD NAME FIELD TYPE CARD. DESCRIPTION

configurationKey KeyValue 0..* Optional. List of requested or known keys

unknownKey CiString50Type 0..* Optional. Requested keys that are unknown

6.25. GetDiagnostics.req

This contains the field definition of the GetDiagnostics.req PDU sent by the Central System to the Charge Point.

See also Get Diagnostics

FIELD NAME FIELD TYPE CARD. DESCRIPTION

location anyURI 1..1 Required. This contains the location (directory) where the diagnostics file shall
be uploaded to.

retries integer 0..1 Optional. This specifies how many times Charge Point must try to upload the
diagnostics before giving up. If this field is not present, it is left to Charge Point
to decide how many times it wants to retry.

retryInterval integer 0..1 Optional. The interval in seconds after which a retry may be attempted. If this
field is not present, it is left to Charge Point to decide how long to wait between
attempts.

startTime dateTime 0..1 Optional. This contains the date and time of the oldest logging information to
include in the diagnostics.

stopTime dateTime 0..1 Optional. This contains the date and time of the latest logging information to
include in the diagnostics.

6.26. GetDiagnostics.conf

This contains the field definition of the GetDiagnostics.conf PDU sent by the Charge Point to the Central System

in response to a GetDiagnostics.req PDU. See also Get Diagnostics

FIELD NAME FIELD TYPE CARD. DESCRIPTION

fileName CiString255Type 0..1 Optional. This contains the name of the file with diagnostic information that will
be uploaded. This field is not present when no diagnostic information is
available.

6.27. GetLocalListVersion.req

This contains the field definition of the GetLocalListVersion.req PDU sent by the Central System to the Charge

Point. See also Get Local List Version

No fields are defined.

66

6.28. GetLocalListVersion.conf

This contains the field definition of the GetLocalListVersion.conf PDU sent by the Charge Point to Central System

in response to a GetLocalListVersion.req PDU. See also Get Local List Version

FIELD NAME FIELD TYPE CARD. DESCRIPTION

listVersion integer 1..1 Required. This contains the current version number of the local authorization list
in the Charge Point.

6.29. Heartbeat.req

This contains the field definition of the Heartbeat.req PDU sent by the Charge Point to the Central System. See

also Heartbeat

No fields are defined.

6.30. Heartbeat.conf

This contains the field definition of the Heartbeat.conf PDU sent by the Central System to the Charge Point in

response to a Heartbeat.req PDU. See also Heartbeat

FIELD NAME FIELD TYPE CARD. DESCRIPTION

currentTime dateTime 1..1 Required. This contains the current time of the Central System.

6.31. MeterValues.req

This contains the field definition of the MeterValues.req PDU sent by the Charge Point to the Central System. See

also Meter Values

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer
connectorId >= 0

1..1 Required. This contains a number (>0) designating a connector of the Charge
Point.‘0’ (zero) is used to designate the main powermeter.

transactionId integer 0..1 Optional. The transaction to which these meter samples are related.

meterValue MeterValue 1..* Required. The sampled meter values with timestamps.

6.32. MeterValues.conf

This contains the field definition of the MeterValues.conf PDU sent by the Central System to the Charge Point in

response to a MeterValues.req PDU. See also Meter Values

No fields are defined.

67

6.33. RemoteStartTransaction.req

This contains the field definitions of the RemoteStartTransaction.req PDU sent to Charge Point by Central

System. See also Remote Start Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer 0..1 Optional. Number of the connector on which to start the transaction.
connectorId SHALL be > 0

idTag IdToken 1..1 Required. The identifier that Charge Point must use to start a transaction.

chargingProfile ChargingProfile 0..1 Optional. Charging Profile to be used by the Charge Point for the requested
transaction. ChargingProfilePurpose MUST be set to TxProfile

6.34. RemoteStartTransaction.conf

This contains the field definitions of the RemoteStartTransaction.conf PDU sent from Charge Point to Central

System. See also Remote Start Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status RemoteStartStopStatus 1..1 Required. Status indicating whether Charge Point accepts the
request to start a transaction.

6.35. RemoteStopTransaction.req

This contains the field definitions of the RemoteStopTransaction.req PDU sent to Charge Point by Central

System. See also Remote Stop Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

transactionId integer 1..1 Required. The identifier of the transaction which Charge Point is requested to
stop.

6.36. RemoteStopTransaction.conf

This contains the field definitions of the RemoteStopTransaction.conf PDU sent from Charge Point to Central

System. See also Remote Stop Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status RemoteStartStopStatus 1..1 Required. Status indicating whether Charge Point accepts the
request to stop a transaction.

6.37. ReserveNow.req

This contains the field definition of the ReserveNow.req PDU sent by the Central System to the Charge Point. See

also Reserve Now

68

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer
connectorId >= 0

1..1 Required. This contains the id of the connector to be reserved. A value of 0
means that the reservation is not for a specific connector.

expiryDate dateTime 1..1 Required. This contains the date and time when the reservation ends.

idTag IdToken 1..1 Required. The identifier for which the Charge Point has to reserve a connector.

parentIdTag IdToken 0..1 Optional. The parent idTag.

reservationId integer 1..1 Required. Unique id for this reservation.

6.38. ReserveNow.conf

This contains the field definition of the ReserveNow.conf PDU sent by the Charge Point to the Central System in

response to a ReserveNow.req PDU. See also Reserve Now

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status ReservationStatus 1..1 Required. This indicates the success or failure of the reservation.

6.39. Reset.req

This contains the field definition of the Reset.req PDU sent by the Central System to the Charge Point. See also

Reset

FIELD NAME FIELD TYPE CARD. DESCRIPTION

type ResetType 1..1 Required. This contains the type of reset that the Charge Point should perform.

6.40. Reset.conf

This contains the field definition of the Reset.conf PDU sent by the Charge Point to the Central System in

response to a Reset.req PDU. See also Reset

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status ResetStatus 1..1 Required. This indicates whether the Charge Point is able to perform the reset.

6.41. SendLocalList.req

This contains the field definition of the SendLocalList.req PDU sent by the Central System to the Charge Point.

If no (empty) localAuthorizationList is given and the updateType is Full, all identifications are removed from the

list. Requesting a Differential update without (empty) localAuthorizationList will have no effect on the list. All

idTags in the localAuthorizationList MUST be unique, no duplicate values are allowed. See also Send Local List

69

FIELD NAME FIELD TYPE CARD. DESCRIPTION

listVersion integer 1..1 Required. In case of a full update this is the version number of the
full list. In case of a differential update it is the version number of
the list after the update has been applied.

localAuthorizationList AuthorizationData 0..* Optional. In case of a full update this contains the list of values
that form the new local authorization list. In case of a differential
update it contains the changes to be applied to the local
authorization list in the Charge Point. Maximum number of
AuthorizationData elements is available in the configuration key:
SendLocalListMaxLength

updateType UpdateType 1..1 Required. This contains the type of update (full or differential) of
this request.

6.42. SendLocalList.conf

This contains the field definition of the SendLocalList.conf PDU sent by the Charge Point to the Central System in

response to a SendLocalList.req PDU. See also Send Local List

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status UpdateStatus 1..1 Required. This indicates whether the Charge Point has successfully received and
applied the update of the local authorization list.

6.43. SetChargingProfile.req

This contains the field definition of the SetChargingProfile.req PDU sent by the Central System to the Charge

Point.

The Central System uses this message to send charging profiles to a Charge Point. See also Set Charging Profile

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer 1..1 Required. The connector to which the charging profile applies. If connectorId = 0,
the message contains an overall limit for the Charge Point.

csChargingProfiles ChargingProfile 1..1 Required. The charging profile to be set at the Charge Point.

6.44. SetChargingProfile.conf

This contains the field definition of the SetChargingProfile.conf PDU sent by the Charge Point to the Central

System in response to a SetChargingProfile.req PDU. See also Set Charging Profile

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status ChargingProfileStatus 1..1 Required. Returns whether the Charge Point has been able to process the
message successfully. This does not guarantee the schedule will be followed to
the letter. There might be other constraints the Charge Point may need to take
into account.

70

6.45. StartTransaction.req

This section contains the field definition of the StartTransaction.req PDU sent by the Charge Point to the Central

System. See also Start Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer
connectorId > 0

1..1 Required. This identifies which connector of the Charge Point is used.

idTag IdToken 1..1 Required. This contains the identifier for which a transaction has to be started.

meterStart integer 1..1 Required. This contains the meter value in Wh for the connector at start of the
transaction.

reservationId integer 0..1 Optional. This contains the id of the reservation that terminates as a result of
this transaction.

timestamp dateTime 1..1 Required. This contains the date and time on which the transaction is started.

6.46. StartTransaction.conf

This contains the field definition of the StartTransaction.conf PDU sent by the Central System to the Charge Point

in response to a StartTransaction.req PDU. See also Start Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

idTagInfo IdTagInfo 1..1 Required. This contains information about authorization status, expiry and
parent id.

transactionId integer 1..1 Required. This contains the transaction id supplied by the Central System.

6.47. StatusNotification.req

This contains the field definition of the StatusNotification.req PDU sent by the Charge Point to the Central

System. See also Status Notification

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer
connectorId >= 0

1..1 Required. The id of the connector for which the status is reported.
Id '0' (zero) is used if the status is for the Charge Point main
controller.

errorCode ChargePointErrorCode 1..1 Required. This contains the error code reported by the Charge
Point.

info CiString50Type 0..1 Optional. Additional free format information related to the error.

status ChargePointStatus 1..1 Required. This contains the current status of the Charge Point.

71

FIELD NAME FIELD TYPE CARD. DESCRIPTION

timestamp dateTime 0..1 Optional. The time for which the status is reported. If absent time
of receipt of the message will be assumed.

vendorId CiString255Type 0..1 Optional. This identifies the vendor-specific implementation.

vendorErrorCode CiString50Type 0..1 Optional. This contains the vendor-specific error code.

6.48. StatusNotification.conf

This contains the field definition of the StatusNotification.conf PDU sent by the Central System to the Charge

Point in response to an StatusNotification.req PDU. See also Status Notification

No fields are defined.

6.49. StopTransaction.req

This contains the field definition of the StopTransaction.req PDU sent by the Charge Point to the Central System.

See also Stop Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

idTag IdToken 0..1 Optional. This contains the identifier which requested to stop the charging. It is
optional because a Charge Point may terminate charging without the presence
of an idTag, e.g. in case of a reset. A Charge Point SHALL send the idTag if known.

meterStop integer 1..1 Required. This contains the meter value in Wh for the connector at end of the
transaction.

timestamp dateTime 1..1 Required. This contains the date and time on which the transaction is stopped.

transactionId integer 1..1 Required. This contains the transaction-id as received by the
StartTransaction.conf.

reason Reason 0..1 Optional. This contains the reason why the transaction was stopped. MAY only
be omitted when the Reason is "Local".

transactionData MeterValue 0..* Optional. This contains transaction usage details relevant for billing purposes.

6.50. StopTransaction.conf

This contains the field definition of the StopTransaction.conf PDU sent by the Central System to the Charge Point

in response to a StopTransaction.req PDU. See also Stop Transaction

FIELD NAME FIELD TYPE CARD. DESCRIPTION

idTagInfo IdTagInfo 0..1 Optional. This contains information about authorization status, expiry and
parent id. It is optional, because a transaction may have been stopped without
an identifier.

72

Mark van den Boomen

6.51. TriggerMessage.req

This contains the field definition of the TriggerMessage.req PDU sent by the Central System to the Charge Point.

See also Trigger Message

FIELD NAME FIELD TYPE CARD. DESCRIPTION

requestedMessage MessageTrigger 1..1 Required.

connectorId integer
connectorId > 0

0..1 Optional. Only filled in when request applies to a specific connector.

6.52. TriggerMessage.conf

This contains the field definition of the TriggerMessage.conf PDU sent by the Charge Point to the Central System

in response to a TriggerMessage.req PDU. See also Trigger Message

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status TriggerMessageStatus 1..1 Required. Indicates whether the Charge Point will send the requested
notification or not.

6.53. UnlockConnector.req

This contains the field definition of the UnlockConnector.req PDU sent by the Central System to the Charge

Point. See also Unlock Connector

FIELD NAME FIELD TYPE CARD. DESCRIPTION

connectorId integer
connectorId > 0

1..1 Required. This contains the identifier of the connector to be unlocked.

6.54. UnlockConnector.conf

This contains the field definition of the UnlockConnector.conf PDU sent by the Charge Point to the Central

System in response to an UnlockConnector.req PDU. See also Unlock Connector

FIELD NAME FIELD TYPE CARD. DESCRIPTION

status UnlockStatus 1..1 Required. This indicates whether the Charge Point has unlocked the connector.

6.55. UpdateFirmware.req

This contains the field definition of the UpdateFirmware.req PDU sent by the Central System to the Charge Point.

See also Update Firmware

73

FIELD NAME FIELD TYPE CARD. DESCRIPTION

location anyURI 1..1 Required. This contains a string containing a URI pointing to a location from
which to retrieve the firmware.

retries integer 0..1 Optional. This specifies how many times Charge Point must try to download the
firmware before giving up. If this field is not present, it is left to Charge Point to
decide how many times it wants to retry.

retrieveDate dateTime 1..1 Required. This contains the date and time after which the Charge Point is
allowed to retrieve the (new) firmware.

retryInterval integer 0..1 Optional. The interval in seconds after which a retry may be attempted. If this
field is not present, it is left to Charge Point to decide how long to wait between
attempts.

6.56. UpdateFirmware.conf

This contains the field definition of the UpdateFirmware.conf PDU sent by the Charge Point to the Central

System in response to a UpdateFirmware.req PDU. See also Update Firmware

No fields are defined.

74

7. Types

7.1. AuthorizationData

Class

Elements that constitute an entry of a Local Authorization List update.

FIELD NAME FIELD TYPE CARD. DESCRIPTION

idTag IdToken 1..1 Required. The identifier to which this authorization applies.

idTagInfo IdTagInfo 0..1 Optional. (Required when UpdateType is Full) This contains information about
authorization status, expiry and parent id. For a Differential update the following
applies: If this element is present, then this entry SHALL be added or updated in
the Local Authorization List. If this element is absent, than the entry for this
idtag in the Local Authorization List SHALL be deleted.

7.2. AuthorizationStatus

Enumeration

Status in a response to an Authorize.req.

VALUE DESCRIPTION

Accepted Identifier is allowed for charging.

Blocked Identifier has been blocked. Not allowed for charging.

Expired Identifier has expired. Not allowed for charging.

Invalid Identifier is unknown. Not allowed for charging.

ConcurrentTx Identifier is already involved in another transaction and multiple transactions are not allowed. (Only relevant for a
StartTransaction.req.)

7.3. AvailabilityStatus

Enumeration

Status returned in response to ChangeAvailability.req.

VALUE DESCRIPTION

Accepted Request has been accepted and will be executed.

Rejected Request has not been accepted and will not be executed.

Scheduled Request has been accepted and will be executed when transaction(s) in progress have finished.

75

7.4. AvailabilityType

Enumeration

Requested availability change in ChangeAvailability.req.

VALUE DESCRIPTION

Inoperative Charge point is not available for charging.

Operative Charge point is available for charging.

7.5. CancelReservationStatus

Enumeration

Status in CancelReservation.conf.

VALUE DESCRIPTION

Accepted Reservation for the identifier has been cancelled.

Rejected Reservation could not be cancelled, because there is no reservation active for the identifier.

7.6. ChargePointErrorCode

Enumeration

Charge Point status reported in StatusNotification.req.

VALUE DESCRIPTION

ConnectorLockFailure Failure to lock or unlock connector.

EVCommunicationError Communication failure with the vehicle, might be Mode 3 or other communication protocol problem. This is
not a real error in the sense that the Charge Point doesn’t need to go to the faulted state. Instead, it should go
to the SuspendedEVSE state.

GroundFailure Ground fault circuit interrupter has been activated.

HighTemperature Temperature inside Charge Point is too high.

InternalError Error in internal hard- or software component.

LocalListConflict The authorization information received from the Central System is in conflict with the LocalAuthorizationList.

NoError No error to report.

76

VALUE DESCRIPTION

OtherError Other type of error. More information in vendorErrorCode.

OverCurrentFailure Over current protection device has tripped.

OverVoltage Voltage has risen above an acceptable level.

PowerMeterFailure Failure to read electrical/energy/power meter.

PowerSwitchFailure Failure to control power switch.

ReaderFailure Failure with idTag reader.

ResetFailure Unable to perform a reset.

UnderVoltage Voltage has dropped below an acceptable level.

WeakSignal Wireless communication device reports a weak signal.

7.7. ChargePointStatus

Enumeration

Status reported in StatusNotification.req. A status can be reported for the Charge Point main controller

(connectorId = 0) or for a specific connector. Status for the Charge Point main controller is a subset of the

enumeration: Available, Unavailable or Faulted.

States considered Operative are: Available, Preparing, Charging, SuspendedEVSE, SuspendedEV, Finishing, Reserved.

States considered Inoperative are: Unavailable, Faulted.

STATUS CONDITION

Available When a Connector becomes available for a new user (Operative)

Preparing When a Connector becomes no longer available for a new user but there is no ongoing Transaction (yet). Typically a Connector
is in preparing state when a user presents a tag, inserts a cable or a vehicle occupies the parking bay
(Operative)

Charging When the contactor of a Connector closes, allowing the vehicle to charge
(Operative)

SuspendedEVSE When the EV is connected to the EVSE but the EVSE is not offering energy to the EV, e.g. due to a smart charging restriction,
local supply power constraints, or as the result of StartTransaction.conf indicating that charging is not allowed etc.
(Operative)

SuspendedEV When the EV is connected to the EVSE and the EVSE is offering energy but the EV is not taking any energy.
(Operative)

77

STATUS CONDITION

Finishing When a Transaction has stopped at a Connector, but the Connector is not yet available for a new user, e.g. the cable has not
been removed or the vehicle has not left the parking bay
(Operative)

Reserved When a Connector becomes reserved as a result of a Reserve Now command
(Operative)

Unavailable When a Connector becomes unavailable as the result of a Change Availability command or an event upon which the Charge
Point transitions to unavailable at its discretion. Upon receipt of a Change Availability command, the status MAY change
immediately or the change MAY be scheduled. When scheduled, the Status Notification shall be send when the availability
change becomes effective
(Inoperative)

Faulted When a Charge Point or connector has reported an error and is not available for energy delivery . (Inoperative).

7.8. ChargingProfile

Class

A ChargingProfile consists of a ChargingSchedule, describing the amount of power or current that can be

delivered per time interval.

ChargingProfile

chargingProfileId: int [1..1]
transactionId: int [0..1]
stackLevel: int [1..1]
chargingProfilePurpose: ChargingProfilePurposeType 1..1
chargingProfileKind: ChargingProfileKindType [1..1]
recurrencyKind: RecurrencyKindType [0..1]
validFrom: DateTime [0..1]
validTo: DateTime [0..1]
chargingSchedule: ChargingSchedule [1..1]

ChargingSchedule

duration: int [0..1]
startSchedule: DateTime [0..1]
schedulingUnit: SchedulingUnitType [1..1]
chargingSchedulePeriod: ChargingSchedulepPeriod [1..*]
minChargingRate: decimal [0..1]

ChargingSchedulePeriod

startPeriod: int [1..1]
limit: int [1..1]
numberPhases: int [0..1]

ChargingProfilePurposeType

ChargePointMaxProfile
TxDefaultProfile
TxProfile

ChargingProfileKindType

Absolute
Recurring
Relative

RecurrencyKindType

Daily
Weekly

1

1

1

*

Figure 42. Class Diagram: ChargingProfile

FIELD NAME FIELD TYPE CARD. DESCRIPTION

chargingProfileId integer 1..1 Required. Unique identifier for this profile.

transactionId integer 0..1 Optional. Only valid if ChargingProfilePurpose is set to TxProfile,
the transactionId MAY be used to match the profile to a specific
transaction.

78

FIELD NAME FIELD TYPE CARD. DESCRIPTION

stackLevel integer >=0 1..1 Required. Value determining level in hierarchy stack of profiles.
Higher values have precedence over lower values. Lowest level is
0.

chargingProfilePurpose ChargingProfilePurposeType 1..1 Required. Defines the purpose of the schedule transferred by this
message.

chargingProfileKind ChargingProfileKindType 1..1 Required. Indicates the kind of schedule.

recurrencyKind RecurrencyKindType 0..1 Optional. Indicates the start point of a recurrence.

validFrom dateTime 0..1 Optional. Point in time at which the profile starts to be valid. If
absent, the profile is valid as soon as it is received by the Charge
Point.

validTo dateTime 0..1 Optional. Point in time at which the profile stops to be valid. If
absent, the profile is valid until it is replaced by another profile.

chargingSchedule ChargingSchedule 1..1 Required. Contains limits for the available power or current over
time.

7.9. ChargingProfileKindType

Enumeration

Kind of charging profile, as used in: ChargingProfile.

VALUE DESCRIPTION

Absolute Schedule periods are relative to a fixed point in time defined in the schedule.

Recurring The schedule restarts periodically at the first schedule period.

Relative Schedule periods are relative to a situation-specific start point (such as the start of a Transaction) that is determined by the
charge point.

7.10. ChargingProfilePurposeType

Enumeration

Purpose of the charging profile, as used in: ChargingProfile.

VALUE DESCRIPTION

ChargePointMaxProfile Configuration for the maximum power or current available for an entire Charge Point.

TxDefaultProfile Default profile *that can be configured in the Charge Point. When a new transaction is started, this profile
SHALL be used, unless it was a transaction that was started by a RemoteStartTransaction.req with a
ChargeProfile that is accepted by the Charge Point.

79

VALUE DESCRIPTION

TxProfile Profile with constraints to be imposed by the Charge Point on the current transaction, or on a new transaction
when this is started via a RemoteStartTransaction.req with a ChargeProfile. A profile with this purpose SHALL
cease to be valid when the transaction terminates.

7.11. ChargingProfileStatus

Enumeration

Status returned in response to SetChargingProfile.req.

VALUE DESCRIPTION

Accepted Request has been accepted and will be executed.

Rejected Request has not been accepted and will not be executed.

NotSupported Charge Point indicates that the request is not supported.

7.12. ChargingRateUnitType

Enumeration

Unit in which a charging schedule is defined, as used in: GetCompositeSchedule.req and ChargingSchedule

VALUE DESCRIPTION

W Watts (power).
This is the TOTAL allowed charging power.
If used for AC Charging, the phase current should be calculated via: Current per phase = Power / (Line Voltage * Number of
Phases). The "Line Voltage" used in the calculation is not the measured voltage, but the set voltage for the area (hence, 230 of
110 volt). The "Number of Phases" is the numberPhases from the ChargingSchedulePeriod.

It is usually more convenient to use this for DC charging.

Note that if numberPhases in a ChargingSchedulePeriod is absent, 3 SHALL be assumed.

A Amperes (current).
The amount of Ampere per phase, not the sum of all phases.

It is usually more convenient to use this for AC charging.

7.13. ChargingSchedule

Class

Charging schedule structure defines a list of charging periods, as used in: GetCompositeSchedule.conf and

ChargingProfile.

80

FIELD NAME FIELD TYPE CARD. DESCRIPTION

duration integer 0..1 Optional. Duration of the charging schedule in seconds. If the
duration is left empty, the last period will continue indefinitely or
until end of the transaction in case startSchedule is absent.

startSchedule dateTime 0..1 Optional. Starting point of an absolute schedule. If absent the
schedule will be relative to start of charging.

chargingRateUnit ChargingRateUnitType 1..1 Required. The unit of measure Limit is expressed in.

chargingSchedulePeriod ChargingSchedulePeriod 1..* Required. List of ChargingSchedulePeriod elements defining
maximum power or current usage over time. The startSchedule of
the first ChargingSchedulePeriod SHALL always be 0.

minChargingRate decimal 0..1 Optional. Minimum charging rate supported by the electric
vehicle. The unit of measure is defined by the chargingRateUnit.
This parameter is intended to be used by a local smart charging
algorithm to optimize the power allocation for in the case a
charging process is inefficient at lower charging rates. Accepts at
most one digit fraction (e.g. 8.1)

7.14. ChargingSchedulePeriod

Class

Charging schedule period structure defines a time period in a charging schedule, as used in: ChargingSchedule.

FIELD NAME FIELD TYPE CARD. DESCRIPTION

startPeriod integer 1..1 Required. Start of the period, in seconds from the start of schedule. The value of
StartPeriod also defines the stop time of the previous period.

limit decimal 1..1 Required. Charging rate limit during the schedule period, in the applicable
chargingRateUnit, for example in Amperes or Watts. Accepts at most one digit
fraction (e.g. 8.1).

numberPhases integer 0..1 Optional. The number of phases that can be used for charging. If a number of
phases is needed, numberPhases=3 will be assumed unless another number is
given.

7.15. CiString20Type

Type

Generic used case insensitive string of 20 characters.

FIELD TYPE DESCRIPTION

CiString[20] String is case insensitive.

7.16. CiString25Type

Type

81

Generic used case insensitive string of 25 characters.

FIELD TYPE DESCRIPTION

CiString[25] String is case insensitive.

7.17. CiString50Type

Type

Generic used case insensitive string of 50 characters.

FIELD TYPE DESCRIPTION

CiString[50] String is case insensitive.

7.18. CiString255Type

Type

Generic used case insensitive string of 255 characters.

FIELD TYPE DESCRIPTION

CiString[255] String is case insensitive.

7.19. CiString500Type

Type

Generic used case insensitive string of 500 characters.

FIELD TYPE DESCRIPTION

CiString[500] String is case insensitive.

7.20. ClearCacheStatus

Enumeration

Status returned in response to ClearCache.req.

VALUE DESCRIPTION

Accepted Command has been executed.

82

VALUE DESCRIPTION

Rejected Command has not been executed.

7.21. ClearChargingProfileStatus

Enumeration

Status returned in response to ClearChargingProfile.req.

VALUE DESCRIPTION

Accepted Request has been accepted and will be executed.

Unknown No Charging Profile(s) were found matching the request.

7.22. ConfigurationStatus

Enumeration

Status in ChangeConfiguration.conf.

VALUE DESCRIPTION

Accepted Configuration key is supported and setting has been changed.

Rejected Configuration key is supported, but setting could not be changed.

RebootRequired Configuration key is supported and setting has been changed, but change will be available after reboot (Charge Point will not
reboot itself)

NotSupported Configuration key is not supported.

7.23. DataTransferStatus

Enumeration

Status in DataTransfer.conf.

VALUE DESCRIPTION

Accepted Message has been accepted and the contained request is accepted.

Rejected Message has been accepted but the contained request is rejected.

UnknownMessageId Message could not be interpreted due to unknown messageId string.

83

VALUE DESCRIPTION

UnknownVendorId Message could not be interpreted due to unknown vendorId string.

7.24. DiagnosticsStatus

Enumeration

Status in DiagnosticsStatusNotification.req.

VALUE DESCRIPTION

Idle Charge Point is not performing diagnostics related tasks. Status Idle SHALL only be used as in a
DiagnosticsStatusNotification.req that was triggered by a TriggerMessage.req

Uploaded Diagnostics information has been uploaded.

UploadFailed Uploading of diagnostics failed.

Uploading File is being uploaded.

7.25. FirmwareStatus

Enumeration

Status of a firmware download as reported in FirmwareStatusNotification.req.

VALUE DESCRIPTION

Downloaded New firmware has been downloaded by Charge Point.

DownloadFailed Charge point failed to download firmware.

Downloading Firmware is being downloaded.

Idle Charge Point is not performing firmware update related tasks. Status Idle SHALL only be used as in a
FirmwareStatusNotification.req that was triggered by a TriggerMessage.req

InstallationFailed Installation of new firmware has failed.

Installing Firmware is being installed.

Installed New firmware has successfully been installed in charge point.

7.26. GetCompositeScheduleStatus

Enumeration

84

Status returned in response to GetCompositeSchedule.req.

VALUE DESCRIPTION

Accepted Request has been accepted and will be executed.

Rejected Request has not been accepted and will not be executed.

7.27. IdTagInfo

Class

Contains status information about an identifier. It is returned in Authorize, Start Transaction and Stop

Transaction responses.

If expiryDate is not given, the status has no end date.

FIELD NAME FIELD TYPE CARD. DESCRIPTION

expiryDate dateTime 0..1 Optional. This contains the date at which idTag should be removed from the
Authorization Cache.

parentIdTag IdToken 0..1 Optional. This contains the parent-identifier.

status AuthorizationStatus 1..1 Required. This contains whether the idTag has been accepted or not by the
Central System.

7.28. IdToken

Type

Contains the identifier to use for authorization. It is a case insensitive string. In future releases this may become

a complex type to support multiple forms of identifiers.

FIELD TYPE DESCRIPTION

CiString20Type IdToken is case insensitive.

7.29. KeyValue

Class

Contains information about a specific configuration key. It is returned in GetConfiguration.conf.

NAME FIELD TYPE CARD. DESCRIPTION

key CiString50Type 1..1 Required.

85

NAME FIELD TYPE CARD. DESCRIPTION

readonly boolean 1..1 Required. False if the value can be set with the ChangeConfiguration message.

value CiString500Type 0..1 Optional. If key is known but not set, this field may be absent.

7.30. Location

Enumeration

Allowable values of the optional "location" field of a value element in SampledValue.

VALUE DESCRIPTION

Body Measurement inside body of Charge Point (e.g. Temperature)

Cable Measurement taken from cable between EV and Charge Point

EV Measurement taken by EV

Inlet Measurement at network (“grid”) inlet connection

Outlet Measurement at a Connector. Default value

7.31. Measurand

Enumeration

Allowable values of the optional "measurand" field of a Value element, as used in MeterValues.req and

StopTransaction.req messages. Default value of "measurand" is always "Energy.Active.Import.Register"


Import is energy flow from the Grid to the Charge Point, EV or other load. Export is energy flow

from the EV to the Charge Point and/or from the Charge Point to the Grid.

VALUE DESCRIPTION

Current.Export Instantaneous current flow from EV

Current.Import Instantaneous current flow to EV

Current.Offered Maximum current offered to EV

Energy.Active.Export.Register Numerical value read from the "active electrical energy" (Wh or kWh) register of the (most authoritative)
electrical meter measuring energy exported (to the grid).

Energy.Active.Import.Register Numerical value read from the "active electrical energy" (Wh or kWh) register of the (most authoritative)
electrical meter measuring energy imported (from the grid supply).

86

VALUE DESCRIPTION

Energy.Reactive.Export.Register Numerical value read from the "reactive electrical energy" (VARh or kVARh) register of the (most
authoritative) electrical meter measuring energy exported (to the grid).

Energy.Reactive.Import.Register Numerical value read from the "reactive electrical energy" (VARh or kVARh) register of the (most
authoritative) electrical meter measuring energy imported (from the grid supply).

Energy.Active.Export.Interval Absolute amount of "active electrical energy" (Wh or kWh) exported (to the grid) during an associated time
"interval", specified by a Metervalues ReadingContext, and applicable interval duration configuration values
(in seconds) for "ClockAlignedDataInterval" and "MeterValueSampleInterval".

Energy.Active.Import.Interval Absolute amount of "active electrical energy" (Wh or kWh) imported (from the grid supply) during an
associated time "interval", specified by a Metervalues ReadingContext, and applicable interval duration
configuration values (in seconds) for "ClockAlignedDataInterval" and "MeterValueSampleInterval".

Energy.Reactive.Export.Interval Absolute amount of "reactive electrical energy" (VARh or kVARh) exported (to the grid) during an associated
time "interval", specified by a Metervalues ReadingContext, and applicable interval duration configuration
values (in seconds) for "ClockAlignedDataInterval" and "MeterValueSampleInterval".

Energy.Reactive.Import.Interval Absolute amount of "reactive electrical energy" (VARh or kVARh) imported (from the grid supply) during an
associated time "interval", specified by a Metervalues ReadingContext, and applicable interval duration
configuration values (in seconds) for "ClockAlignedDataInterval" and "MeterValueSampleInterval".

Frequency Instantaneous reading of powerline frequency. NOTE: OCPP 1.6 does not have a UnitOfMeasure for
frequency, the UnitOfMeasure for any SampledValue with measurand: Frequency is Hertz.

Power.Active.Export Instantaneous active power exported by EV. (W or kW)

Power.Active.Import Instantaneous active power imported by EV. (W or kW)

Power.Factor Instantaneous power factor of total energy flow

Power.Offered Maximum power offered to EV

Power.Reactive.Export Instantaneous reactive power exported by EV. (var or kvar)

Power.Reactive.Import Instantaneous reactive power imported by EV. (var or kvar)

RPM Fan speed in RPM

SoC State of charge of charging vehicle in percentage

Temperature Temperature reading inside Charge Point.

Voltage Instantaneous AC RMS supply voltage

87



All "Register" values relating to a single charging transaction, or a non-transactional consumer

(e.g. charge point internal power supply, overall supply) MUST be monotonically increasing in

time.

The actual quantity of energy corresponding to a reported ".Register" value is computed as

the register value in question minus the register value recorded/reported at the start of the

transaction or other relevant starting reference point in time. For improved auditability,

".Register" values SHOULD reported exactly as they are directly read from a non-volatile

register in the electrical metering hardware, and SHOULD NOT be re-based to zero at the start

of transactions. This allows any "missing energy" between sequential transactions, due to

hardware fault, mis-wiring, fraud, etc. to be identified, by allowing the Central System to

confirm that the starting register value of any transaction is identical to the finishing register

value of the preceding transaction on the same connector.

7.32. MessageTrigger

Enumeration

Type of request to be triggered in a TriggerMessage.req.

VALUE DESCRIPTION

BootNotification To trigger a BootNotification request

DiagnosticsStatusNotification To trigger a DiagnosticsStatusNotification request

FirmwareStatusNotification To trigger a FirmwareStatusNotification request

Heartbeat To trigger a Heartbeat request

MeterValues To trigger a MeterValues request

StatusNotification To trigger a StatusNotification request

7.33. MeterValue

Class

Collection of one or more sampled values in MeterValues.req and StopTransaction.req. All sampled values in a

MeterValue are sampled at the same point in time.

FIELD NAME FIELD TYPE CARD. DESCRIPTION

timestamp dateTime 1..1 Required. Timestamp for measured value(s).

sampledValue SampledValue 1..* Required. One or more measured values

88

7.34. Phase

Enumeration

Phase as used in SampledValue. Phase specifies how a measured value is to be interpreted. Please note that not

all values of Phase are applicable to all Measurands.

VALUE DESCRIPTION

L1 Measured on L1

L2 Measured on L2

L3 Measured on L3

N Measured on Neutral

L1-N Measured on L1 with respect to Neutral conductor

L2-N Measured on L2 with respect to Neutral conductor

L3-N Measured on L3 with respect to Neutral conductor

L1-L2 Measured between L1 and L2

L2-L3 Measured between L2 and L3

L3-L1 Measured between L3 and L1

7.35. ReadingContext

Enumeration

Values of the context field of a value in SampledValue.

VALUE DESCRIPTION

Interruption.Begin Value taken at start of interruption.

Interruption.End Value taken when resuming after interruption.

Other Value for any other situations.

Sample.Clock Value taken at clock aligned interval.

Sample.Periodic Value taken as periodic sample relative to start time of transaction.

Transaction.Begin Value taken at start of transaction.

89

VALUE DESCRIPTION

Transaction.End Value taken at end of transaction.

Trigger Value taken in response to a TriggerMessage.req

7.36. Reason

Enumeration

Reason for stopping a transaction in StopTransaction.req.

VALUE DESCRIPTION

DeAuthorized The transaction was stopped because of the authorization status in a StartTransaction.conf

EmergencyStop Emergency stop button was used.

EVDisconnected disconnecting of cable, vehicle moved away from inductive charge unit.

HardReset A hard reset command was received.

Local Stopped locally on request of the user at the Charge Point. This is a regular termination of a transaction. Examples: presenting
an RFID tag, pressing a button to stop.

Other Any other reason.

PowerLoss Complete loss of power.

Reboot A locally initiated reset/reboot occurred. (for instance watchdog kicked in)

Remote Stopped remotely on request of the user. This is a regular termination of a transaction. Examples: termination using a
smartphone app, exceeding a (non local) prepaid credit.

SoftReset A soft reset command was received.

UnlockCommand Central System sent an Unlock Connector command.

7.37. RecurrencyKindType

Enumeration

Type of recurrence of a charging profile, as used in ChargingProfile.

VALUE DESCRIPTION

Daily The schedule restarts every 24 hours, at the same time as in the startSchedule.

90

VALUE DESCRIPTION

Weekly The schedule restarts every 7 days, at the same time and day-of-the-week as in the startSchedule.

7.38. RegistrationStatus

Enumeration

Result of registration in response to BootNotification.req.

VALUE DESCRIPTION

Accepted Charge point is accepted by Central System.

Pending Central System is not yet ready to accept the Charge Point. Central System may send messages to retrieve information or
prepare the Charge Point.

Rejected Charge point is not accepted by Central System. This may happen when the Charge Point id is not known by Central System.

7.39. RemoteStartStopStatus

Enumeration

The result of a RemoteStartTransaction.req or RemoteStopTransaction.req request.

VALUE DESCRIPTION

Accepted Command will be executed.

Rejected Command will not be executed.

7.40. ReservationStatus

Enumeration

Status in ReserveNow.conf.

VALUE DESCRIPTION

Accepted Reservation has been made.

Faulted Reservation has not been made, because connectors or specified connector are in a faulted state.

Occupied Reservation has not been made. All connectors or the specified connector are occupied.

Rejected Reservation has not been made. Charge Point is not configured to accept reservations.

91

VALUE DESCRIPTION

Unavailable Reservation has not been made, because connectors or specified connector are in an unavailable state.

7.41. ResetStatus

Enumeration

Result of Reset.req.

VALUE DESCRIPTION

Accepted Command will be executed.

Rejected Command will not be executed.

7.42. ResetType

Enumeration

Type of reset requested by Reset.req.

VALUE DESCRIPTION

Hard Restart (all) the hardware, the Charge Point is not required to gracefully stop ongoing transaction. If possible the Charge Point
sends a StopTransaction.req for previously ongoing transactions after having restarted and having been accepted by the
Central System via a BootNotification.conf. This is a last resort solution for a not correctly functioning Charge Point, by sending
a "hard" reset, (queued) information might get lost.

Soft Stop ongoing transactions gracefully and sending StopTransaction.req for every ongoing transaction. It should then restart the
application software (if possible, otherwise restart the processor/controller).

7.43. SampledValue

Class

Single sampled value in MeterValues. Each value can be accompanied by optional fields.

FIELD NAME FIELD TYPE CARD. DESCRIPTION

value String 1..1 Required. Value as a “Raw” (decimal) number or “SignedData”. Field Type is
“string” to allow for digitally signed data readings. Decimal numeric values are
also acceptable to allow fractional values for measurands such as Temperature
and Current.

context ReadingContext 0..1 Optional. Type of detail value: start, end or sample. Default = “Sample.Periodic”

format ValueFormat 0..1 Optional. Raw or signed data. Default = “Raw”

measurand Measurand 0..1 Optional. Type of measurement. Default = “Energy.Active.Import.Register”

92

FIELD NAME FIELD TYPE CARD. DESCRIPTION

phase Phase 0..1 Optional. indicates how the measured value is to be interpreted. For instance
between L1 and neutral (L1-N) Please note that not all values of phase are
applicable to all Measurands. When phase is absent, the measured value is
interpreted as an overall value.

location Location 0..1 Optional. Location of measurement. Default=”Outlet”

unit UnitOfMeasure 0..1 Optional. Unit of the value. Default = “Wh” if the (default) measurand is an
“Energy” type.

7.44. TriggerMessageStatus

Enumeration

Status in TriggerMessage.conf.

VALUE DESCRIPTION

Accepted Requested notification will be sent.

Rejected Requested notification will not be sent.

NotImplemented Requested notification cannot be sent because it is either not implemented or unknown.

7.45. UnitOfMeasure

Enumeration

Allowable values of the optional "unit" field of a Value element, as used in SampledValue. Default value of "unit"

is always "Wh".

VALUE DESCRIPTION

Wh Watt-hours (energy). Default.

kWh kiloWatt-hours (energy).

varh Var-hours (reactive energy).

kvarh kilovar-hours (reactive energy).

W Watts (power).

kW kilowatts (power).

VA VoltAmpere (apparent power).

93

VALUE DESCRIPTION

kVA kiloVolt Ampere (apparent power).

var Vars (reactive power).

kvar kilovars (reactive power).

A Amperes (current).

V Voltage (r.m.s. AC).

Celsius Degrees (temperature).

Fahrenheit Degrees (temperature).

K Degrees Kelvin (temperature).

Percent Percentage.

7.46. UnlockStatus

Enumeration

Status in response to UnlockConnector.req.

VALUE DESCRIPTION

Unlocked Connector has successfully been unlocked.

UnlockFailed Failed to unlock the connector: The Charge Point has tried to unlock the connector and has detected that the connector is still
locked or the unlock mechanism failed.

NotSupported Charge Point has no connector lock, or ConnectorId is unknown.

7.47. UpdateStatus

Enumeration

Type of update for a SendLocalList.req.

VALUE DESCRIPTION

Accepted Local Authorization List successfully updated.

Failed Failed to update the Local Authorization List.

94

VALUE DESCRIPTION

NotSupported Update of Local Authorization List is not supported by Charge Point.

VersionMismatch Version number in the request for a differential update is less or equal then version number of current list.

7.48. UpdateType

Enumeration

Type of update for a SendLocalList.req.

VALUE DESCRIPTION

Differential Indicates that the current Local Authorization List must be updated with the values in this message.

Full Indicates that the current Local Authorization List must be replaced by the values in this message.

7.49. ValueFormat

Enumeration

Format that specifies how the value element in SampledValue is to be interpreted.

VALUE DESCRIPTION

Raw Data is to be interpreted as integer/decimal numeric data.

SignedData Data is represented as a signed binary data block, encoded as hex data.

95

8. Firmware and Diagnostics File Transfer

This section is normative.

The supported transfer protocols are controlled by the configuration key SupportedFileTransferProtocols. FTP,

FTPS, HTTP, HTTPS (CSL)

8.1. Download Firmware

When a Charge Point is notified about new firmware, it needs to be able to download this firmware. The Central

System supplies in the request an URL where the firmware can be downloaded. The URL also contains the

protocol which must be used to download the firmware.

It is recommended that the firmware is downloaded via FTP or FTPS. FTP(S) is better optimized for large binary

data than HTTP. Also FTP(S) has the ability to resume downloads. In case a download is interrupted, the Charge

Point can resume downloading after the part it already has downloaded. The FTP URL is of format: ftp://user

:password@host:port/path in which the parts user:password@, :password or :port may be excluded.

To ensure that the correct firmware is downloaded, it is RECOMMENDED that the firmware is also digitally

signed.

8.2. Upload Diagnostics

When a Charge Point is requested to upload a diagnostics file, the Central System supplies in the request an URL

where the Charge Point should upload the file. The URL also contains the protocol which must be used to upload

the file.

It is recommended that the diagnostics file is downloaded via FTP or FTPS. FTP(S) is better optimized for large

binary data than HTTP. Also FTP(S) has the ability to resume uploads. In case an upload is interrupted, the

Charge Point can resume uploading after the part it already has uploaded. The FTP URL is of format: ftp://user

:password@host:port/path in which the parts user:password@, :password or :port may be excluded.

96

9. Standard Configuration Key Names & Values

Below follows a list of all configuration keys with a role standardized in this specification. The list is separated by

Feature Profiles. A required configuration key mentioned under a particular profile only has to be supported by

the Charge Point if it supports that profile.

For optional Configuration Keys with a boolean type, the following rules apply for the configuration key in the

response to a GetConfiguration.req without a list of keys:

• If the key is present, the Charge Point provides the functionality that is configured by the key, and it can be

enabled or disabled by setting the value for the key.

• If the key is not present, the Charge Point does not provide the functionality that can be configured by the

key.

The "Accessibility" property shows if the value for a certain configuration key is read-only ("R") or read-write

("RW"). In case the key is read-only, the Central System can read the value for the key using GetConfiguration, but

not write it. In case the accessibility is read-write, the Central System can also write the value for the key using

ChangeConfiguration.

9.1. Core Profile

9.1.1. AllowOfflineTxForUnknownId

Required/optional optional

Accessibility RW

Type boolean

Description If this key exists, the Charge Point supports Unknown Offline Authorization. If this key reports a value of true, Unknown Offline
Authorization is enabled.

9.1.2. AuthorizationCacheEnabled

Required/optional optional

Accessibility RW

Type boolean

Description If this key exists, the Charge Point supports an Authorization Cache. If this key reports a value of true, the Authorization Cache
is enabled.

9.1.3. AuthorizeRemoteTxRequests

Required/optional required

97

Accessibility R or RW. Choice is up to Charge Point implementation.

Type boolean

Description Whether a remote request to start a transaction in the form of a RemoteStartTransaction.req message should be authorized
beforehand like a local action to start a transaction.

9.1.4. BlinkRepeat

Required/optional optional

Accessibility RW

Type integer

Unit times

Description Number of times to blink Charge Point lighting when signalling

9.1.5. ClockAlignedDataInterval

Required/optional required

Accessibility RW

Type integer

Unit seconds

Description Size (in seconds) of the clock-aligned data interval. This is the size (in seconds) of the set of evenly spaced aggregation intervals
per day, starting at 00:00:00 (midnight). For example, a value of 900 (15 minutes) indicates that every day should be broken into
96 15-minute intervals.
When clock aligned data is being transmitted, the interval in question is identified by the start time and (optional) duration
interval value, represented according to the ISO8601 standard. All "per-period" data (e.g. energy readings) should be
accumulated (for "flow" type measurands such as energy), or averaged (for other values) across the entire interval (or partial
interval, at the beginning or end of a Transaction), and transmitted (if so enabled) at the end of each interval, bearing the
interval start time timestamp.
A value of "0" (numeric zero), by convention, is to be interpreted to mean that no clock-aligned data should be transmitted.

9.1.6. ConnectionTimeOut

Required/optional required

Accessibility RW

Type integer

Unit seconds

98

Description Interval *from beginning of status: 'Preparing' until incipient Transaction is automatically canceled, due to failure of EV driver to
(correctly) insert the charging cable connector(s) into the appropriate socket(s). The Charge Point SHALL go back to the original
state, probably: 'Available'.

9.1.7. ConnectorPhaseRotation

Required/optional required

Accessibility RW

Type CSL

Description The phase rotation per connector in respect to the connector’s electrical meter (or if absent, the grid connection). Possible
values per connector are:
NotApplicable (for Single phase or DC Charge Points)
Unknown (not (yet) known)
RST (Standard Reference Phasing)
RTS (Reversed Reference Phasing)
SRT (Reversed 240 degree rotation)
STR (Standard 120 degree rotation)
TRS (Standard 240 degree rotation)
TSR (Reversed 120 degree rotation)

R can be identified as phase 1 (L1), S as phase 2 (L2), T as phase 3 (L3).

If known, the Charge Point MAY also report the phase rotation between the grid connection and the main energymeter by
using index number Zero (0).

Values are reported in CSL, formatted: 0.RST, 1.RST, 2.RTS

9.1.8. ConnectorPhaseRotationMaxLength

Required/optional optional

Accessibility R

Type integer

Description Maximum number of items in a ConnectorPhaseRotation Configuration Key.

9.1.9. GetConfigurationMaxKeys

Required/optional required

Accessibility R

Type integer

Description Maximum number of requested configuration keys in a GetConfiguration.req PDU.

9.1.10. HeartbeatInterval

Required/optional required

99

Accessibility RW

Type integer

Unit seconds

Description Interval of inactivity (no OCPP exchanges) with central system after which the Charge Point should send a Heartbeat.req PDU

9.1.11. LightIntensity

Required/optional optional

Accessibility RW

Type integer

Unit %

Description Percentage of maximum intensity at which to illuminate Charge Point lighting

9.1.12. LocalAuthorizeOffline

Required/optional required

Accessibility RW

Type boolean

Description whether the Charge Point, when offline, will start a transaction for locally-authorized identifiers.

9.1.13. LocalPreAuthorize

Required/optional required

Accessibility RW

Type boolean

Description whether the Charge Point, when online, will start a transaction for locally-authorized identifiers without waiting for or
requesting an Authorize.conf from the Central System

9.1.14. MaxEnergyOnInvalidId

Required/optional optional

100

Accessibility RW

Type integer

Unit Wh

Description Maximum energy in Wh delivered when an identifier is invalidated by the Central System after start of a transaction.

9.1.15. MeterValuesAlignedData

Required/optional required

Accessibility RW

Type CSL

Description Clock-aligned measurand(s) to be included in a MeterValues.req PDU, every ClockAlignedDataInterval seconds

9.1.16. MeterValuesAlignedDataMaxLength

Required/optional optional

Accessibility R

Type integer

Description Maximum number of items in a MeterValuesAlignedData Configuration Key.

9.1.17. MeterValuesSampledData

Required/optional required

Accessibility RW

Type CSL

Description Sampled measurands to be included in a MeterValues.req PDU, every MeterValueSampleInterval seconds. Where
applicable, the Measurand is combined with the optional phase; for instance: Voltage.L1

Default: "Energy.Active.Import.Register"

9.1.18. MeterValuesSampledDataMaxLength

Required/optional optional

Accessibility R

101

Type integer

Description Maximum number of items in a MeterValuesSampledData Configuration Key.

9.1.19. MeterValueSampleInterval

Required/optional required

Accessibility RW

Type integer

Unit seconds

Description Interval between sampling of metering (or other) data, intended to be transmitted by "MeterValues" PDUs. For charging
session data (ConnectorId>0), samples are acquired and transmitted periodically at this interval from the start of the charging
transaction.
A value of "0" (numeric zero), by convention, is to be interpreted to mean that no sampled data should be transmitted.

9.1.20. MinimumStatusDuration

Required/optional optional

Accessibility RW

Type integer

Unit seconds

Description The minimum duration that a Charge Point or Connector status is stable before a StatusNotification.req PDU is sent to the
Central System.

9.1.21. NumberOfConnectors

Required/optional required

Accessibility R

Type integer

Description The number of physical charging connectors of this Charge Point.

9.1.22. ResetRetries

Required/optional required

102

Accessibility RW

Type integer

Unit times

Description Number of times to retry an unsuccessful reset of the Charge Point.

9.1.23. StopTransactionOnEVSideDisconnect

Required/optional required

Accessibility RW

Type boolean

Description When set to true, the Charge Point SHALL administratively stop the transaction when the cable is unplugged from the EV.

9.1.24. StopTransactionOnInvalidId

Required/optional required

Accessibility RW

Type boolean

Description whether the Charge Point will stop an ongoing transaction when it receives a non- Accepted authorization status in a
StartTransaction.conf for this transaction

9.1.25. StopTxnAlignedData

Required/optional required

Accessibility RW

Type CSL

Description Clock-aligned periodic measurand(s) to be included in the TransactionData element of StopTransaction.req MeterValues.req
PDU for every ClockAlignedDataInterval of the Transaction

9.1.26. StopTxnAlignedDataMaxLength

Required/optional optional

Accessibility R

103

Type integer

Description Maximum number of items in a StopTxnAlignedData Configuration Key.

9.1.27. StopTxnSampledData

Required/optional required

Accessibility RW

Type CSL

Description Sampled measurands to be included in the TransactionData element of StopTransaction.req PDU, every
MeterValueSampleInterval seconds from the start of the charging session

9.1.28. StopTxnSampledDataMaxLength

Required/optional optional

Accessibility R

Type integer

Description Maximum number of items in a StopTxnSampledData Configuration Key.

9.1.29. SupportedFeatureProfiles

Required/optional required

Accessibility R

Type CSL

Description A list of supported Feature Profiles. Possible profile identifiers: Core, FirmwareManagement, LocalAuthListManagement,
Reservation, SmartCharging and RemoteTrigger.

9.1.30. SupportedFeatureProfilesMaxLength

Required/optional optional

Accessibility R

Type integer

Description Maximum number of items in a SupportedFeatureProfiles Configuration Key.

104

9.1.31. TransactionMessageAttempts

Required/optional required

Accessibility RW

Type integer

Unit times

Description How often the Charge Point should try to submit a transaction-related message when the Central System fails to process it.

9.1.32. TransactionMessageRetryInterval

Required/optional required

Accessibility RW

Type integer

Unit seconds

Description How long the Charge Point should wait before resubmitting a transaction-related message that the Central System failed to
process.

9.1.33. UnlockConnectorOnEVSideDisconnect

Required/optional required

Accessibility RW

Type boolean

Description When set to true, the Charge Point SHALL unlock the cable on Charge Point side when the cable is unplugged at the EV.

9.1.34. WebSocketPingInterval

Required/optional optional

Accessibility RW

Type integer

Unit seconds

105

Description Only relevant for websocket implementations. 0 disables client side websocket Ping/Pong. In this case there is either no
ping/pong or the server initiates the ping and client responds with Pong. Positive values are interpreted as number of seconds
between pings. Negative values are not allowed. ChangeConfiguration is expected to return a REJECTED result.

9.2. Local Auth List Management Profile

9.2.1. LocalAuthListEnabled

Required/optional required

Accessibility RW

Type boolean

Description whether the Local Authorization List is enabled

9.2.2. LocalAuthListMaxLength

Required/optional required

Accessibility R

Type integer

Description Maximum number of identifications that can be stored in the Local Authorization List

9.2.3. SendLocalListMaxLength

Required/optional required

Accessibility R

Type integer

Description Maximum number of identifications that can be send in a single SendLocalList.req

9.3. Reservation Profile

9.3.1. ReserveConnectorZeroSupported

Required/optional optional

Accessibility R

Type boolean

106

Description If this configuration key is present and set to true: Charge Point support reservations on connector 0.

9.4. Smart Charging Profile

9.4.1. ChargeProfileMaxStackLevel

Required/optional required

Accessibility R

Type integer

Description Max StackLevel of a ChargingProfile. The number defined also indicates the max allowed number of installed charging
schedules per Charging Profile Purposes.

9.4.2. ChargingScheduleAllowedChargingRateUnit

Required/optional required

Accessibility R

Type CSL

Description A list of supported quantities for use in a ChargingSchedule. Allowed values: 'Current' and 'Power'

9.4.3. ChargingScheduleMaxPeriods

Required/optional required

Accessibility R

Type integer

Description Maximum number of periods that may be defined per ChargingSchedule.

9.4.4. ConnectorSwitch3to1PhaseSupported

Required/optional optional

Accessibility R

Type boolean

Description If defined and true, this Charge Point support switching from 3 to 1 phase during a Transaction.

107

9.4.5. MaxChargingProfilesInstalled

Required/optional required

Accessibility R

Type integer

Description Maximum number of Charging profiles installed at a time

108

Appendix A: New in OCPP 1.6

The following changes are made in OCPP 1.6 compared to OCPP 1.5 [OCPP1.5]:

• Smart Charging is added

• A binding to JSON over WebSocket as a transport protocol is added, reducing data usage and enabling

OCPP communication through NAT routers, see: OCPP JSON Specification

• Extra statuses are added to the ChargePointStatus enumeration, giving the CPO and ultimately end-users

more information about the current status of a Charge Point

• Structure of MeterValues.req is changed to eliminate use of XML Attributes, this is needed for support of

JSON (no attribute support in JSON).

• Extra values are added to the Measurand enumeration, giving Charge Point manufacturers the possibility

to send new information to a Central System, such as the State of Charge of an EV

• The TriggerMessage message is added, giving the Central System the possibility to request information

from the Charge Point

• A new Pending member is added to the RegistrationStatus enumeration used in BootNotification.conf

• More and clearer configuration keys are added, making it clearer to the CPO how to configure the

different business cases in a Charge Point

• The messages and configuration keys are split into profiles, making it easier to implement OCPP gradually

or only in part

• Known ambiguities are removed (e.g. when to use UnlockConnector.req, how to respond to RemoteStart

/Stop, Connector numbering)

A.1. Updated/New Messages:

• BootNotification.req

• Change IccId and Imsi to CiString[] to enforce maximum lengths.

• BootNotification.conf

• heartbeatInterval to interval, interval now also used for other purposes than heartbeat, need to fix

in spec

• Added status Pending

• ChargePointErrorCode

• Added enumvalues: InternalError, LocalListConfict and UnderVoltage

• Renamed enum value Mode3Error to EVCommunicationError

• ChargePointStatus

• Replaced enum value Occupied with the more detailed values: Preparing, Charging,

SuspendedEVSE, SuspendedEV and Finishing

• ChargingRateUnitType

• New

109

• ConfigurationStatus

• Added enum RebootRequired

• ClearChargingProfile.req

• New

• ClearChargingProfile.conf

• New

• DiagnosticsStatus

• Added enum Uploading and Idle

• FirmwareStatus

• Added enum Downloading, Installing and Idle

• GetCompositeSchedule.req

• New

• GetCompositeSchedule.conf

• New

• Location

• Added enum Cable and EV

• Measurand

• Added enum Current.Offered, Frequency, Power.Factor, Power.Offered, RPM and SoC

• MeterValues.req

• overhaul of complex data structures

• Added 'phase' field

• ReadingContext

• Added enum Trigger and Other

• RemoteStartTransaction.req

• Added ChargingProfile optional

• SendLocalList.req

• removed hash

• SendLocalList.conf

• removed hash

• SetChargingProfile.req

• New

• SetChargingProfile.conf

• New

110

• StatusNotification.req

• Overhaul of states

• New error codes

• Connector id 0 can only have status: Available, Unavailable and Faulted.

• StopTransaction.req

• added explicit and required stop reason

• TriggerMessage.req

• New

• TriggerMessage.conf

• New

• UnlockConnector.conf

• overhaul of UnlockStatus enum

• UnitOfMeasure

• Added Fahrenheit, K, Percent, VA, kVA

• Rename Volt to V, Amp to A

111

	Open Charge Point Protocol 1.6
	Table of Contents
	1. Scope
	2. Terminology and Conventions
	2.1. Conventions
	2.2. Definitions
	2.3. Abbreviations
	2.4. References

	3. Introduction
	3.1. Edition 2
	3.2. Document structure
	3.3. Feature Profiles
	3.4. General views of operation
	3.5. Local Authorization & Offline Behavior
	3.6. Transaction in relation to Energy Transfer Period
	3.7. Transaction-related messages
	3.8. Connector numbering
	3.9. ID Tokens
	3.10. Parent idTag
	3.11. Reservations
	3.12. Vendor-specific data transfer
	3.13. Smart Charging
	3.14. Time zones
	3.15. Time notations
	3.16. Metering Data

	4. Operations Initiated by Charge Point
	4.1. Authorize
	4.2. Boot Notification
	4.3. Data Transfer
	4.4. Diagnostics Status Notification
	4.5. Firmware Status Notification
	4.6. Heartbeat
	4.7. Meter Values
	4.8. Start Transaction
	4.9. Status Notification
	4.10. Stop Transaction

	5. Operations Initiated by Central System
	5.1. Cancel Reservation
	5.2. Change Availability
	5.3. Change Configuration
	5.4. Clear Cache
	5.5. Clear Charging Profile
	5.6. Data Transfer
	5.7. Get Composite Schedule
	5.8. Get Configuration
	5.9. Get Diagnostics
	5.10. Get Local List Version
	5.11. Remote Start Transaction
	5.12. Remote Stop Transaction
	5.13. Reserve Now
	5.14. Reset
	5.15. Send Local List
	5.16. Set Charging Profile
	5.17. Trigger Message
	5.18. Unlock Connector
	5.19. Update Firmware

	6. Messages
	6.1. Authorize.req
	6.2. Authorize.conf
	6.3. BootNotification.req
	6.4. BootNotification.conf
	6.5. CancelReservation.req
	6.6. CancelReservation.conf
	6.7. ChangeAvailability.req
	6.8. ChangeAvailability.conf
	6.9. ChangeConfiguration.req
	6.10. ChangeConfiguration.conf
	6.11. ClearCache.req
	6.12. ClearCache.conf
	6.13. ClearChargingProfile.req
	6.14. ClearChargingProfile.conf
	6.15. DataTransfer.req
	6.16. DataTransfer.conf
	6.17. DiagnosticsStatusNotification.req
	6.18. DiagnosticsStatusNotification.conf
	6.19. FirmwareStatusNotification.req
	6.20. FirmwareStatusNotification.conf
	6.21. GetCompositeSchedule.req
	6.22. GetCompositeSchedule.conf
	6.23. GetConfiguration.req
	6.24. GetConfiguration.conf
	6.25. GetDiagnostics.req
	6.26. GetDiagnostics.conf
	6.27. GetLocalListVersion.req
	6.28. GetLocalListVersion.conf
	6.29. Heartbeat.req
	6.30. Heartbeat.conf
	6.31. MeterValues.req
	6.32. MeterValues.conf
	6.33. RemoteStartTransaction.req
	6.34. RemoteStartTransaction.conf
	6.35. RemoteStopTransaction.req
	6.36. RemoteStopTransaction.conf
	6.37. ReserveNow.req
	6.38. ReserveNow.conf
	6.39. Reset.req
	6.40. Reset.conf
	6.41. SendLocalList.req
	6.42. SendLocalList.conf
	6.43. SetChargingProfile.req
	6.44. SetChargingProfile.conf
	6.45. StartTransaction.req
	6.46. StartTransaction.conf
	6.47. StatusNotification.req
	6.48. StatusNotification.conf
	6.49. StopTransaction.req
	6.50. StopTransaction.conf
	6.51. TriggerMessage.req
	6.52. TriggerMessage.conf
	6.53. UnlockConnector.req
	6.54. UnlockConnector.conf
	6.55. UpdateFirmware.req
	6.56. UpdateFirmware.conf

	7. Types
	7.1. AuthorizationData
	7.2. AuthorizationStatus
	7.3. AvailabilityStatus
	7.4. AvailabilityType
	7.5. CancelReservationStatus
	7.6. ChargePointErrorCode
	7.7. ChargePointStatus
	7.8. ChargingProfile
	7.9. ChargingProfileKindType
	7.10. ChargingProfilePurposeType
	7.11. ChargingProfileStatus
	7.12. ChargingRateUnitType
	7.13. ChargingSchedule
	7.14. ChargingSchedulePeriod
	7.15. CiString20Type
	7.16. CiString25Type
	7.17. CiString50Type
	7.18. CiString255Type
	7.19. CiString500Type
	7.20. ClearCacheStatus
	7.21. ClearChargingProfileStatus
	7.22. ConfigurationStatus
	7.23. DataTransferStatus
	7.24. DiagnosticsStatus
	7.25. FirmwareStatus
	7.26. GetCompositeScheduleStatus
	7.27. IdTagInfo
	7.28. IdToken
	7.29. KeyValue
	7.30. Location
	7.31. Measurand
	7.32. MessageTrigger
	7.33. MeterValue
	7.34. Phase
	7.35. ReadingContext
	7.36. Reason
	7.37. RecurrencyKindType
	7.38. RegistrationStatus
	7.39. RemoteStartStopStatus
	7.40. ReservationStatus
	7.41. ResetStatus
	7.42. ResetType
	7.43. SampledValue
	7.44. TriggerMessageStatus
	7.45. UnitOfMeasure
	7.46. UnlockStatus
	7.47. UpdateStatus
	7.48. UpdateType
	7.49. ValueFormat

	8. Firmware and Diagnostics File Transfer
	8.1. Download Firmware
	8.2. Upload Diagnostics

	9. Standard Configuration Key Names & Values
	9.1. Core Profile
	9.2. Local Auth List Management Profile
	9.3. Reservation Profile
	9.4. Smart Charging Profile

	Appendix A: New in OCPP 1.6
	A.1. Updated/New Messages:

