
OCPP & California Pricing Requirements

v3.1, 13-09-2024

Table of Contents

1. Introduction . 2

2. Cost Calculation in OCPP . 2

3. Tariff and Cost Features in OCPP 1.6 . 3

3.1. Displaying Price and Cost in OCPP 1.6 . 3

3.2. Multi-language support for tariffs (new in v3) . 8

3.3. Timezone for Display. 11

3.4. Idle Fees. 11

3.5. Direct Payment . 14

3.6. Sequence diagrams showing the OCPP 1.6 customizations . 14

3.7. Sequence diagrams for (partly) offline situations . 18

4. Tariff and Cost Features in OCPP 2.0.1 . 23

4.1. Displaying Price and Cost in OCPP 2.0.1. 23

4.2. Device Model Settings for Tariff and Cost. 26

4.3. Multi-language support for tariffs (new in v3) . 27

4.4. Idle Fees. 29

4.5. Direct Payment . 31

4.6. Sequence diagram showing OCPP 2.0.1 messages. 31

4.7. Offline behavior . 33

5. Checklist Items Requiring Attention. 34

6. Appendix: Relevant Requirements per Section . 36

OCA Application Note

Relevant for OCPP version: 1.6 and 2.0.1.

Copyright © 2024 Open Charge Alliance. All rights reserved.

This document is made available under the *Creative Commons Attribution-NoDerivatives 4.0 International Public

License* (https://creativecommons.org/licenses/by-nd/4.0/legalcode).

Version History

Version Date Author Description

1.0 2020-07-14 Franc Buve (OCA) 1.0 version

2.0 2021-09-17 Franc Buve (OCA) Extended with support for real-time cost

calculation on the charger.

2.1 2023-06-05 Franc Buve (OCA) Fixed minor typos/inconsistencies in JSON

examples

3.0 2024-02-22 Franc Buve (OCA) Added multi-language support

3.1 2024-09-13 Franc Buve (OCA) Fixed error in par 3.2 where a configuration

variable was referred to as DefaultPrice

instead of DefaultPriceText.

Fixed fields in TransactionEventResponse

(UpdatedPersonalMessage)

Removed "idlePrice" from DefaultPrice in

sequence diagrams.

1

https://creativecommons.org/licenses/by-nd/4.0/legalcode

1. Introduction

The National Conference on Weights and Measures in the USA has issued a document [1] with checklists and test

procedures for electric vehicle fueling systems, which has been adopted by the California Division of

Measurement Standards (DMS). Many requirements in the checklists apply to capabilities of the charging station

(e.g. having a display or how to display prices), but in some cases it poses requirements for information that is

being exchanged between charging station and CSMS (back-office).

This document explains how price and cost information can be communicated to the customer with OCPP 1.6 by

creating a few custom extensions. It continues to show how this can be achieved in OCPP 2.0.1 with standard

messages. A customization of a single message is required if real-time cost calculation on the charger is needed.

Section Checklist Items Requiring Attention summarizes the items for which no direct support exists in OCPP

and offers alternative solutions. Finally, the Appendix: Relevant Requirements per Section lists all requirements

from the checklist that are relevant to OCPP.

Based on experiences from first implementations in the field this document has been updated. The running cost

information is now sent in a structured JSON-format, which will result in more standardized implementations.

The new format also enables the charging station to calculate and display a running total in between the

periodic cost updates that it receives from the back-end.

2. Cost Calculation in OCPP

Since tariffs can potentially be quite complex with prices depending on things like time of day, power, amount of

energy and type of contract, OCPP has adopted the approach of letting the CSMS calculate the cost and

communicate this to the charging station. In a situation where CPO and eMSP are not the same party, we have to

deal with two different prices: a wholesale price that CPO is charging to the eMSP and a retail price of eMPS to

the customer. It is the retail price that has to be communicated on the charging station. Note, that the eMSP

retail price can vary from a simple surcharge on the wholesale price to something completely unrelated, like a

flat rate. This is something that can only be provided by the CSMS, because the charging station does not have

access to this data.

Upon each meter value that the charging station sends, CSMS will send back the calculated running cost of the

transaction. This means that the running cost on the display will only be updated after each meter interval.

Typically, meter values are sent every 30 to 60 seconds on a fast charger (level 3) and every 5 to 15 minutes on a

regular (level 2) charging station. This update frequency is too low to pass CTEP [2] certification. To remedy this

situation we provide the charging station with the unit prices that are needed to calculate and show the running

cost locally until the next cost update from CSMS arrives.

2

3. Tariff and Cost Features in OCPP 1.6

OCPP 1.6 does not provide any support for the communication of cost or prices. Therefore, extensive

customization is needed on both Central System and charge point [3] to transfer the required data. These

customizations on both ends need to be perfectly aligned, or it will not work.

3.1. Displaying Price and Cost in OCPP 1.6

It is possible to use a ChangeConfiguration message to set a default price to be displayed at a charge point. This

mechanism is, however, not suitable to display a running cost or final cost message, since these messages

depend on the transaction in progress and must only be shown to the user of the transaction and at the right

connector.

A better method is therefore to use DataTransfer messages to convey the pricing information to the charge

point. A way to implement this, is to use a configuration key for the default price and create a custom

SetUserPrice and a RunningCost and FinalCost message in OCPP 1.6 using DataTransfer. This makes it possible

to link the pricing information to the user or the transaction.

It is good practice to define a boolean configuration key ("CustomDisplayCostAndPrice"), that a Central System

can query to find out if this customization is present and optionally use it to enable or disable the customization:

ChangeConfiguration.req("CustomDisplayCostAndPrice", "true")

DataTransfer messages need to have a vendor ID to identify the customization. We advise to use the value

"org.openchargealliance.costmsg" to identify the customizations that are described in this document.

The pricing messages are described in the following sections.

NOTE
Backslashes that are required to escape quotation marks within a field have been omitted from

the command examples for readability.

3.1.1. Default Price

The default price is displayed when the user has not yet been identified, because authorization has not taken

place. Setting of the default price is only needed once, as long as it does not change, and can therefore be done

via a configuration variable. This variable is set with a JSON string with three data fields.

The field priceText holds a text to show on the display. The optional field priceTextOffline can be used to

display a different pricing message when the charge point is offline. An optional third field chargingPrice can

contain the pricing components that the charge point should use in case a transaction is started while the

charge point is offline and cannot receive RunningCost messages. (See Sequence diagrams for (partly) offline

situations).

There is no "idlePrice" component in the default price, because when the charge point is offline, the Central

System cannot notify the charge point that it should start using idle price. See Idle Time During Transaction for

more information on idle time.

3

An example message for DefaultPrice with pricing information to use when offline:

 ChangeConfiguration.req("DefaultPrice", "{
 "priceText": "0.15 $/kWh, idle fee after charging: 1 $/hr",
 "priceTextOffline": "The station is offline. Charging is possible for
0.15 $/kWh.",
 "chargingPrice": { "kWhPrice": 0.15, "hourPrice": 0.00, "flatFee": 0.00 }
 }")

An example message for DefaultPrice when no cost is calculated when offline:

 ChangeConfiguration.req("DefaultPrice", "{
 "priceText": "0.15 $/kWh, idle fee after charging: 1 $/hr",
 "priceTextOffline": "The station is offline. The charging is free-of-
charge.",
 }")

Table 1. data fields in ChangeConfiguration.req for DefaultPrice

Field Type Card. Description

priceText string 1..1 Text for display of price information.

priceTextOffline string 0..1 Alternative text for display when charge point is offline.

chargingPrice ChargingPrice 0..1 Structure with price components to use when starting a

session while offline. Not needed if offline sessions are not

allowed or not charged.

3.1.2. User-specific Price

When the user has been identified, Central System can send the user-specific price. It is linked to the

authorization token. This may be a different price than the default price. The user-specific price message is for

display only. It has no "chargingPrice" and "idlePrice" fields, because Central System will send a RunningCost

message immediately after the StartTransaction message.

 DataTransfer.req("vendorId": "org.openchargealliance.costmsg",
 "messageId": "SetUserPrice",
 "data": "{
 "idToken": "12345678",
 "priceText": "$0.12/kWh, no idle fee"
 }")

Table 2. data fields in DataTransfer.req for SetUserPrice

Field Type Card. Description

idToken string 1..1 idToken of the user to which this price applies.

priceText string 1..1 Text for display of price and price components.

4

3.1.3. Final Cost

The following message is used to send the final cost. It is linked to the transaction and sent at the end of the

transaction. The cost field contains the total cost, which the charge point might use to send to an integrated

payment terminal if it is equipped with one. The priceText field contains the message for display at the charge

point, which shows the price and its components. It can also contain a URL that points to a location where the

user can retrieve an invoice. For convenience this URL can also be provided in the optional qrCodeText field. A

charge point that supports it, can then display the URL as a QR code for easy scanning by the user.

 DataTransfer.req("vendorId": "org.openchargealliance.costmsg",
 "messageId": "FinalCost",
 "data": "{
 "transactionId": 98765,
 "cost": 3.31,
 "priceText": "$2.81 @ $0.12/kWh, $0.50 @ $1/h, TOTAL KWH: 23.4
 TIME: 03.50 COST: $3.31.
 Visit www.cpo.com/invoices/13546 for an invoice of your session.",
 "qrCodeText": "https://www.cpo.com/invoices/13546"
 }")

Table 3. data fields in DataTransfer.req for FinalCost

Field Type Card. Description

transactionId integer 1..1 Transaction to which this applies.

cost decimal 1..1 Calculated total final cost.

priceText string 1..1 Text for display of price and price components.

qrCodeText string 0..1 Optional URL to display as QR code.

3.1.4. RunningCost Message

The RunningCost message is used to display the price and cost during the transaction.

The Central System sends a DataTransfer message, called "RunningCost", immediately after sending the

StartTransaction.conf response. This message also has the unit prices that the charging point needs to calculate

the running cost locally, so that a real-time display of transaction cost can be shown to the customer.

Upon each meter value it receives from the charge point the Central System updates the running cost of the

transaction and sends a RunningCost message, that holds the cost of the transaction up to the meter value that

it just received.

The message has unit prices to be used when the EV is charging and optionally a unit price for an idle fee. It is up

the Central System to decide if and when an idle fee shall be charged. This is indicated by the field "state", which

can be "Charging" or "Idle". The price for charging is sent in the chargingPrice field; the price for idle in the

idlePrice field.

If the prices change at a certain time of the day, then these can be added in the optional nextPeriod field. There

may be other situations when the price might change, however. For that purpose a field triggerMeterValue can

be added, which describes when, in addition to the regular sampled meter values, the charging point should

5

send a meter value. Upon receiving a meter value Central System will send a new RunningCost message which

contains the updated price information. A triggerMeterValue can be set to a time of day, an energy amount or

a power amount.

A full description of the JSON structure for the RunningCost message is shown below:

Table 4. data fields in DataTransfer.req for RunningCost

Field Type Card. Description

transactionId integer 1..1 Transaction to which this applies.

timestamp dateTime 1..1 Timestamp of the meter value upon which this cost is based.

meterValue integer 1..1 Meter value (Wh) upon which this cost is based.

cost decimal 1..1 Calculated total running cost.

state string 1..1 "Charging" or "Idle". Determines which pricing components

are to be used.

chargingPrice ChargingPrice 1..1 Price components while charging.

idlePrice IdlePrice 0..1 Price components while not charging. Optional if no idle fee

is charged.

nextPeriod NextPeriod 0..1 Pricing for next period.

triggerMeterValue Triggers 0..1 Triggers to request a new meter value.

Table 5. ChargingPrice

Field Type Card. Description

kWhPrice decimal 0..1 Price per kWh.

hourPrice decimal 0..1 Price per hour of charging.

flatFee decimal 0..1 Flat fee for (part of) charging session.

Table 6. IdlePrice

Field Type Card. Description

graceMinutes integer 0..1 Grace period in minutes before idle time is charged.

Grace minutes start counting from the timestamp of the

message in which state changed from "Charging" to "Idle".

hourPrice decimal 0..1 Price per hour while idle.

Table 7. NextPeriod

Field Type Card. Description

atTime dateTime 1..1 Time when these prices become active.

chargingPrice ChargingPrice 1..1 Price components while charging.

idlePrice IdlePrice 0..1 Price components while idle. Optional if no idle fee charged.

Table 8. Triggers

6

Field Type Card. Description

atTime dateTime 0..1 Time when a meter value must be sent.

atEnergykWh decimal 0..1 Consumed energy amount in kWh upon which a meter value

must be sent.

atPowerkW decimal 0..1 Power threshold in kW when meter value must be sent

when crossing in downward or upward direction. Can either

be used to trigger a meter value when vehicle stops charging

or when vehicle charges at a high power that requires a

different tariff.

It is recommended to implement a hysteresis around this

value to avoid repetitive triggers when the power fluctuates

around this level.

atCPStatus string 0..6 ChargePointStatus upon which a meter value must be sent.

Values matching ChargePointStatus enumeration: Available,

Preparing, Charging, SuspendedEVSE, SuspendedEV, Finishing

RunningCost (full example)

 DataTransfer.req("vendorId": "org.openchargealliance.costmsg",
 "messageId": "RunningCost",
 "data": "{
 "transactionId": 12345,
 "timestamp": "2021-03-19T12:00:00Z", "meterValue": 1234000,
 "cost": 1.00,
 "state": "Charging",
 "chargingPrice": {
 "kWhPrice": 0.123, "hourPrice": 0.00, "flatFee": 0.00 },
 "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 },
 "nextPeriod: {
 "atTime": "2021-03-19T19:00:00Z",
 "chargingPrice": {
 "kWhPrice": 0.100, "hourPrice": 0.00, flatFee": 0.00 },
 "idlePrice": { "hourPrice": 0.00 }
 }
 "triggerMeterValue": {
 "atTime": "2021-03-19T23:00:00Z",
 "atEnergykWh": 50.0,
 "atPowerkW": 0.1,
 "atCPStatus": ["SuspendedEV", "SuspendedEVSE"]
 }
 }")

7

RunningCost (minimal example, only kWh price)

 DataTransfer.req("vendorId": "org.openchargealliance.costmsg",
 "messageId": "RunningCost",
 "data": "{
 "transactionId": 12345,
 "timestamp": "2021-03-19T12:00:00Z", "meterValue": 1234000,
 "cost": 1.00,
 "state": "Charging"
 "chargingPrice": { "kWhPrice": 0.123 }
 }")

RunningCost (realistic example, kWh price, idle fee, future price change)

 DataTransfer.req("vendorId": "org.openchargealliance.costmsg",
 "messageId": "RunningCost",
 "data": "{
 "transactionId": 12345,
 "timestamp": "2021-03-19T14:00:00Z", "meterValue": 1234567,
 "cost": 1.00,
 "state": "Idle",
 "chargingPrice": { "kWhPrice": 0.123 },
 "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 },
 "nextPeriod: {
 "atTime": "2021-03-19T19:00:00Z",
 "chargingPrice": { "kWhPrice": 0.100 },
 "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 }
 }
 }")

3.2. Multi-language support for tariffs (new in v3)

NOTE
A charge point that provides multi-language support for tariffs will report the configuration key

"CustomMultiLanguageMessages" as true.

The Central System can check if a charge point provides multi-language support as follows:

GetConfiguration.req("CustomMultiLanguageMessages")

This will return a value "true" when this customization is supported.

In order to minimize the impact of adding the multi-language customization, the existing priceText field remains

valid, and a new field priceTextExtra is added to support different languages. The CTEP customization allows for

a maximum of 4 languages to be sent in addition to the default language.

The Central System needs to be able to retrieve the list of languages that are supported by the UI of the charging

station. To allow for this, a configuration keys is added through which a charging station conveys how many and

which languages it can support. (Shown values are only an example).

Language codes shall be specified as IETF RFC5646 (as in OCPP 2.0.1).

8

ChangeConfiguration.req("SupportedLanguages", "en,de,fr,nl,sv")

This leads to the following overview of configuration variables for the multi-language support.

Table 9. Overview configuration keys

Configuration key Type ReadWrit

e/

ReadOnly

Description

CustomMultiLanguageMessages boolean RO True when charging station supports

multiple languages as per this document.

Language string RW Default language code for the stations UI.

Can be changed by CSMS.

SupportedLanguages CSL RO Comma separated list of supported

language codes, per RFC5646.

3.2.1. Multi-language default tariffs/pricing information

The default pricing is set as follows:

ChangeConfiguration.req("DefaultPrice", "{
 "priceText": "0.15 $/kWh, idle fee after charging: 1 $/hr",
 "priceTextOffline": "The station is offline. Charging is possible for 0.15
$/kWh.",
 "chargingPrice": { "kWhPrice": 0.15, "hourPrice": 0.00, "flatFee": 0.00 }
 }")

Fields priceTextOffline and chargingPrice have a cardinality [0..1], as they are only needed when supporting

offline operations.

There are limitations on how long the value part of a configuration key can be, so we need multiple keys for

multi-lingual support, one per language. The name of the key is "DefaultPriceText,<language code>". The

standard configuration key "DefaultPrice" is still used to define the chargingPrice to ensure that the same

pricing will be used for all languages.

ChangeConfiguration.req("DefaultPriceText,<language code>", "{
 "priceText": "0.15 $/kWh, idle fee after charging: 1 $/hr",
 "priceTextOffline": "The station is offline. Charging is possible for
0.15$/kWh."
 }")

where <language code> is the language code per RFC5646. Thus, we could for instance have the following

configuration keys:

9

DefaultPrice <-- text in default language and chargingPrice
DefaultPriceText,en-US <-- text for English language in US
DefaultPriceText,fr-CA <-- text for French language in Canada
DefaultPriceText,sv <-- text for Swedish language

All depends on which languages we need to support, and if multiple variants of the same language are needed.

3.2.2. Multi-language driver/user-specific pricing

Driver/user specific pricing in the default language is sent as follows:

DataTransfer.req("org.openchargealliance.costmsg", "SetUserPrice", "{
 "idToken": "12345678",
 "priceText": "€0.12/kWh, no idle fee"
 }")

Since DataTransfer message does not have the size limitations of a configuration key, we can add multiple

languages in the same message. When the configuration "CustomMultiLanguageMessages" was reported as

"true", the DataTransfer.req will add the field priceTextExtra, which is a variant of priceText with format, language

and content fields. priceTextExtra is used for text in other languages than the default language.

DataTransfer.req("org.openchargealliance.costmsg", "SetUserPrice", "{
 "idToken": "12345678",
 "priceText": "GBP 0.12/kWh, no idle fee",
 "priceTextExtra": [{"format": "UTF8", "language": "nl",
 "content": "€0.12/kWh, geen idle fee"},
 {"format": "UTF8", "language": "de",
 "content": "€0,12/kWh, keine Leerlaufgebühr"},
 ...]
 }")

The field priceTextExtra has the same format as MessageContentType in OCPP 2.0.1:

Field Type Card. Description

format string 1..1 One of "ASCII", "HTML", "UTF8"

language string 1..1 Message language identifier. Contains a language code

as defined in RFC5646.

content string 1..1 Message text

The supported languages are constrained by the configuration keys described in Multi-language support for

tariffs (new in v3).

3.2.3. Multi-language final cost

The priceTextExtra field for FinalCost is treated in exactly the same way as above.

10

DataTransfer.req("org.openchargealliance.costmsg", "FinalCost", "{
 "transactionId": 98765,
 "cost": 3.31,
 "priceText": "GBP 2.81 @ 0.12/kWh, GBP 0.50 @ 1/h, TOTAL KWH: 23.4
 TIME: 03.50 COST: GBP 3.31.
 Visit www.cpo.com/invoices/13546 for an invoice of your session.",
 "priceTextExtra": [
 {"format": "UTF8", "language": "nl",
 "content": "€2.81 @ €0.12/kWh, €0.50 @ €1/h, TOTAL KWH: 23.4
 TIME: 03.50 COST: €3.31.
 Bezoek www.cpo.com/invoices/13546 voor een factuur van
 uw laadsessie."},
 {"format": "UTF8", "language": "de",
 "content": "€2,81 @ €0,12/kWh, €0,50 @ €1/h, GESAMT-KWH: 23,4
 ZEIT: 03:50 KOSTEN: €3,31.
 Besuchen Sie www.cpo.com/invoices/13546 um eine Rechnung
 für Ihren Ladevorgang zu erhalten.“}
]
 "qrCodeText": "https://www.cpo.com/invoices/13546"
 }")

3.3. Timezone for Display

OCPP 1.6 does not have built-in support for timezones. It may be desirable to set a timezone when displaying

time related to pricing information. The timezone of the charge point can be set using the following

configuration variables:

TimeOffset:

ChangeConfiguration.req("TimeOffset", "-05:00")

NextTimeOffsetTransitionDateTime:

When to change to summer or winter time.

ChangeConfiguration.req("NextTimeOffsetTransitionDateTime",
 "2021-03-28T02:00:00+01:00"

TimeOffsetNextTransition:

ChangeConfiguration.req("TimeOffsetNextTransition", "-04:00")

This is similar to how time offsets are set as device model variables in OCPP 2.0.1.

3.4. Idle Fees

NOTE Idle fee calculation is not a DMS requirement.

If the pricing model needs to calculate an idle fee, i.e. charge a fee for being connected after charging has

completed, then there are two different scenarios that can occur. There is idle time within the transaction and

11

idle time after the transaction has ended while the vehicle remains connected to the charge point. The first

situation can easily be detected, because the received meter values do not change. Whereas the second

situation can easily be handled in OCPP 2.0.1, this is not the case for OCPP 1.6, which was never designed to deal

with this situation.

3.4.1. Idle Time During Transaction

DMS or CTEP do not define how idle time should be measured if an idle fee is charged. It is up to Central System

and not the charge point, to decide when a transaction is considered to be in idle time. The reason for this is,

that charging may have been suspended on request of Central System due to a demand response event or a

smart charging algorithm. In that case it would not be fair to charge an idle fee to the customer.

Central System can detect that an EV is no longer charging when it sees that meter values stay the same.

Depending on the meter value interval, it can take many minutes before it is noticed, unless the charge point

sends a status notification SuspendedEV or SuspendedEVSE.

NOTE
It is up to the CSO to decide whether both SuspendedEV and SuspendedEVSE are counted as idle

time, or only SuspendedEV is considered idle time.

Detect idle by low power usage

Central System can request the charge point to send a meter value whenever the vehicle charges with less than

a certain power by setting the atPowerkW trigger (e.g. at a value of 0.1 kW). If the charge point has been

configured to send not only the measurand "Energy.Active.Import.Register", but also "Power.Active.Import", then

Central System will immediately know from the power reading, that the EV has stopped charging. If only the

register reading is provided, then Central System will have to wait until the next meter value to know that the EV

has stopped charging. This is still quicker than via the regular meter intervals, though.

NOTE

A meter value is triggered to be sent everytime the atPowerkW threshold is crossed in upward

or downward direction. Some logic in the Central System is required to determine the direction

in which the threshold is crossed.

If a charging suspension is caused by local load-balancing and not initiated by the Central System, then the

Central System will not know, based on power consumption alone, whether the suspension is caused by EV or

EVSE, unless it also monitors the StatusNotifications for SuspendedEV or SuspendedEVSE. In that situation it is

convenient to use the atCPStatus trigger.

Detect idle by charge point status change

When a charge point goes into a SuspendedEV or SuspendedEVSE state, then Central System knows that charging

has paused when it receives a StatusNotification.req. If the Central System needs to know the meter value at

start of pausing, then the RunningCost messages should contain the atCPStatus trigger with the values

SuspendedEV and SuspendedEVSE, in order to trigger the charge point to send a meter value at that moment.

Switch between Idle and Charging

When Central System detects that charging has paused, it will send a new RunningCost message with state set

to "Idle". From that moment on, the charge point will charge the idle time according to the parameters in

12

idlePrice.

When the EV resumes charging, the charge point may send a status notification "Charging" or it will after some

time send a meter value. (Sending of the meter value can be forced by setting the atPowerkW or atCPStatus

triggers). Central System will then send a new RunningCost message with state set to "Charging" and the charge

point will use the chargingPrice information to calculate cost to show on the display.

3.4.2. Idle Time When Transaction Has Ended

It is more difficult to detect idle time that occurs after the transaction has finished and the EV remains

connected. A tempting solution in OCPP 1.6 would be to wait for a StatusNotification "Available" to signal that

the vehicle has been unplugged. This is, however, not reliable. In the event that the charge point is offline when

the transaction is stopped, the StatusNotifications may never reach Central System, since they are not required

to be queued by the charge point.

3.4.3. Reliable Connector Unplug Message

Using the StatusNotification to detect unplugging is not always reliable, since this message is not guaranteed to

be queued when the charge point is offline. A work-around for this is to define a DataTransfer message

"ConnectorUnplugged", which the charge point sends to signal that the connector has been unplugged and the

idle fee calculation can be stopped.

Such a DataTransfer message looks like this:

 DataTransfer.req("vendorId": "org.openchargealliance.costmsg",
 "messageId": "ConnectorUnplugged",
 "data": "{"transactionId": 123456, "timestamp": "2020-06-01T12:34:00Z"}"
)

IMPORTANT

This DataTransfer "ConnectorUnplugged" message does not replace the existing

StatusNotification.req message. The DataTransfer "ConnectorUnplugged" is sent as an

additional reliable message that is queued as long as the charge point is offline, like other

transaction-related messages.

A charge point still needs to send the StatusNotification.req when the connector becomes available, since a

Central System might depend on it to report accurate connector status. It also ensures maximum compatibility

in case a Central System does not support the new DataTransfer message.

A Central System normally ends a transaction upon receiving the StopTransaction.req message. If the

customization to calculate an idle fee after a transaction has stopped (until connector is unplugged) has been

implemented, then this must be reported in a boolean configuration key "CustomIdleFeeAfterStop" that reports

"true" to the Central System, so that it knows, that it has to extend the transaction until receipt of the

DataTransfer "ConnectorUnplugged".

 ChangeConfiguration.req("CustomIdleFeeAfterStop", "true")

This same configuration key can be used by the Central System to switch this behavior off, when it does not

13

support the extending of a transaction after stop.

3.5. Direct Payment

Normally, it is the eMSP that invoices the customer, but in the event of direct payment with credit or debit card

or other means, then the CPO acts as an eMSP. In that case there must be a way to make a printable receipt

available to the customer upon request. (See [EVSE_S.2.6])

Since a charge point is not normally equipped with a printer, the solution is to display a message that directs the

customer to a website where the receipt can be downloaded.

3.6. Sequence diagrams showing the OCPP 1.6 customizations

The following diagram shows the sequence of events to report price and cost during a transaction.

3.6.1. Price calculation during transaction

Central System sends calculated cost and price for current and optionally next period. Charge point uses this to

calculate intermediate cost values.

14

Price calculation during transaction

Central System Charge Point

opt [Install new default price]

ChangeConfiguration.req("DefaultPrice", "priceText": "0.15 $/kWh, idle fee after charging: 1 $/hr",
"chargingPrice": { "kWhPrice": 0.15, "hourPrice": 0.00, "flatFee": 0.00 })

ChangeConfiguration.conf(Accepted)

Starting transaction

Authorize.req(<idToken>) User authorizes on #1

Authorize.conf(Accepted)

DataTransfer.req("SetUserPrice", <idToken>, "$0.123 per kWh, 1$/hour idle fee")Central System sends
user-specific price

DataTransfer.conf(Accepted)

StartTransaction.req(1, <idToken>, meterValue=1234000) User plugs in

StartTransaction.conf(Accepted, <txId>)

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T12:00:00Z", "meterValue": 1234000,
"cost": 0.00,
"state": "Charging",
"chargingPrice": {"kWhPrice": 0.123 },
"idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 },
"nextPeriod": { "atTime": "2021-03-19T19:00:00Z", ... },
"triggerMeterValue": { "atPowerkW": 0.1 } })

Central System sends
cost and unit price with
triggers for price change at
19:00H and at idle threshold

DataTransfer.conf(Accepted)

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage

Receiving meter values

loop [During transaction]

MeterValue.req(1235000) CP sends new meter value

MeterValue.conf()

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T12:10:00Z", "meterValue": 1235000,
"cost": 1.23,
"state": "Charging",
"chargingPrice": {"kWhPrice": 0.123 },
"idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 },
"nextPeriod": { "atTime": "2021-03-19T19:00:00Z", ... },
"triggerMeterValue": { "atPowerkW": 0.1 } })

Central System sends
updated cost and unit price

DataTransfer.conf(Accepted)

calibrate locally calculated
cost with central cost

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage

Transaction continues

Figure 1. Price calculation during transaction

15

3.6.2. Price calculation when EV stops and resumes

When Central System discovers that EV has stopped charging, it sends a RunningCost for state 'Idle' with grace

period, idle costs and charging costs. Charging costs are included so that Charge point can start counting again

as soon as EV resumes charging.

Price calculation when EV stops and resumes

Central System Charge Point

EV has stopped charging

EV stops charging

MeterValue.req(1236789)
EV sends meter value
when charging drops below
atPowerkW watts

MeterValue.conf()

MeterValue.req(1236789) EV sends regular sampled
meter value

MeterValue.conf()

starts grace and idle periodCentral System detects
Idle situation

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T14:00:00Z", "meterValue": 1236789,
"cost": 2.00,
"state": "Idle","chargingPrice": {"kWhPrice": 0.123 }, "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 },
"triggerMeterValue": { "atPowerkW": 0.1 } })

Central System sends
updated cost and unit price

DataTransfer.conf(Accepted)

calibrate locally calculated
cost with central cost

loop [Grace period of 30 minutes]

no cost for idle

loop [Idle period]

calculate and display cost
for idle time

EV resumes charging

EV resumes charging

MeterValue.req(1236790)
EV sends meter value
when charging rises above
atPowerkW watts

MeterValue.conf()

MeterValue.req(1236800) EV sends regular sampled
meter value

MeterValue.conf()

stops charging idle feeCentral System detects
EV is charging

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T15:00:00Z", "meterValue": 1236800,
"cost": 2.50,
"state": "Charging", "chargingPrice": {"kWhPrice": 0.123 }, "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 },
"triggerMeterValue": { "atPowerkW": 0.1 } })

Central System sends
updated cost and
next period price

DataTransfer.conf(Accepted)

calibrate locally calculated
cost with central cost

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage

Transaction continues

Figure 2. Price calculation when EV stops and resumes

16

3.6.3. Price calculation at stop of transaction

Price calculation at stop of transaction

Central System Charge Point

StopTransaction.req(txId, meterValue=1260100) User stops transaction

StopTransaction.conf()

Calculate idle fee after stop until plugged out (optional)

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T15:30:00Z", "meterValue": 1260100,
"cost": 3.50,
"state": "Idle",
"idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 } })

Central System sends
updated cost and unit price
for idle.
Other fields are no longer
applicable and MAY be omitted.

DataTransfer.conf(Accepted)

calibrate locally calculated
cost with central cost

Start charging grace/idle time

loop [Display usage and cost]

calculate and display cost
for grace/idle time

StatusNotification.req(1, Available) User plugs out

StatusNotification.conf()

DataTransfer.req("ConnectorUnplugged", <txId>, <timestamp>) CP reliably signals
connector unplugged

DataTranfer.conf(Accepted)

Dislay final cost

DataTransfer.req("FinalCost", <txId>, 3.70, "$3.20 @ $0.123/kWh, $0.50 @ $1/h, TOTAL KWH: 26.1 TIME: 03:30H COST: $3.70") }Central System
sends final cost

DataTransfer.conf(Accepted)

display total cost and quantity

Figure 3. Price calculation at stop of transaction

17

3.7. Sequence diagrams for (partly) offline situations

Different operators may implement different behavior for offline situations. This may also be governed by local

legislation. The sequence diagrams shown in this chapter are meant to illustrate which messages can be sent in

partly offline situations. These are not normative.

The final cost is calculated by Central System. Without a connection the charge point can only show the cost that

it has calculated locally. This should be the same as the cost from Central System, but that is not guaranteed.

Several approaches are possible:

No charge

When the final cost cannot be displayed, nothing is charged for the transaction.

Partial charge

When the final cost cannot be displayed, only charge up to the last meter value received during the transaction.

Regular charge

When the final cost cannot be displayed, show a message to the customer, that the cost shown on the display

may deviate slightly from the final cost on the invoice, because the system currently has no connection with the

back-office. Or alternatively, do not show any cost at all due to lack of connectivity.

3.7.1. Price calculation when temporarily offline

The charge point can continue with its calculations for current and next period, and final cost can be displayed,

because it is back online before the transaction finishes.

18

Price calculation when temporarily offline

Central System Charge Point

Transaction is in progress

Receiving a meter value

loop [During transaction]

MeterValue.req(1234000) CP sends new meter value

MeterValue.conf()

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T12:00:00Z", "meterValue": 1234000,
"cost": 3.12, "state": "Charging", "chargingPrice": {"kWhPrice": 0.123 } })

Central System sends
updated cost and
unit price

DataTransfer.conf(Accepted)

CP recalibrates cost

calibrate locally calculated
cost with central cost

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage

Connection to Central System is lost

Charge Point goes offline

MeterValue.req()

loop [While offline]

calculate and display cost
based on known prices
for current and next period

Connection to Central System is restored

Charge Point back online

loop [During transaction]

MeterValue.req(1244000) CP sends new meter value

MeterValue.conf()

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T14:00:00Z", "meterValue": 1244000,
"cost": 1.23, "state": "Charging", "chargingPrice": {"kWhPrice": 0.123 } })

Central System sends
updated cost and
next period price

DataTransfer.conf(Accepted)

CP recalibrates cost

calibrate locally calculated
cost with central cost

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage

Continuing as online transaction

Figure 4. Price calculation when temporarily offline

19

3.7.2. Price calculation for offline stopped transaction

The charge point has calculated the price, but final cost cannot be displayed until the charge point is online

again.

Price calculation when offline when stopping transaction

Central System Charge Point

Transaction is in progress

Receiving a meter value

loop [During transaction]

MeterValue.req(1234000) CP sends new meter value

MeterValue.conf()

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T12:00:00Z", "meterValue": 1234000,
"cost": 3.12, "state": "Charging", "chargingPrice": {"kWhPrice": 0.123 } })

Central System sends
updated cost and
next period price

DataTransfer.conf(Accepted)

CP recalibrates cost

calibrate locally calculated
cost with central cost

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage

Connection to Central System is lost

Charge Point goes offline

MeterValue.req()

loop [While offline]

calculate and display cost
based on unit price
for charging.
No idle fee calculation.

User stops transaction

StopTransaction.req(txId, meterValue=1244000)

CP queues message

Later, when connection to Central System is restored

Charge Point back online

StopTransaction.req(txId, meterValue=1244000) CP sends stop notification

StopTransaction.conf()

DataTransfer.req("FinalCost", <txId>, 1.23, "$1.23 @ $0.123/kWh, $0.00 @ $1/h, TOTAL KWH: 10.0 TIME: 01:30H COST: $1.23") }Central System
sends final cost

DataTransfer.conf(Accepted)

CP only displays information
if this is the most recent transaction
and no other transaction in progress

Figure 5. Price calculation for offline stopped transaction

20

3.7.3. Price calculation for offline started transaction

User-specific price is not known. Charge point cannot show running costs, unless it has been configured with

unit prices for the default pricing. The user agrees to use default pricing. If the charge point gets back online,

Central System continues to use the default price scheme.

NOTE Alternatively, charging could be disallowed or be free of charge while offline.

Price calculation when transaction started offline, ended online

Central System Charge Point

Default price was installed previously

ChangeConfiguration.req("DefaultPrice", "priceText": "0.15 $/kWh, idle fee after charging: 1 $/hr",
"chargingPrice": { "kWhPrice": 0.15, "hourPrice": 0.00, "flatFee": 0.00 })

ChangeConfiguration.conf(Accepted)

CP goes offline

Transaction is started while offline

Charge Point is offline

Authorize.req(<idToken>) User tries to authorize

lookup <idToken> in cache/
local list

CP authorizes offline

"No price information of user is known
Using default pricing. Agree? Y/N"

StartTransaction.req(1, <idToken>) User plugs in

CP caches start notification

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage.
Cannot charge idle fee
while offline.

Connection to Central System is restored

Charge Point back online

StartTransaction.req(1, <idToken>, meterValue=1234000)

Central Systems notices that
transaction was started offline

StartTransaction.conf(Accepted, <txId>)

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T12:00:00Z", "meterValue": 1234000,
"cost": 0.00,
"state": "Charging",
"chargingPrice": {"kWhPrice": 0.150 },
"idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 } })

Central System sends
cost and unit price for
DEFAULT pricing scheme

DataTransfer.conf(Accepted)

loop [During transaction]

MeterValue.req(1234100) CP sends new meter value

MeterValue.conf()

DataTransfer.req("RunningCost", "{ "transactionId": <txId>, "time": "2021-03-19T12:10:00Z", "meterValue": 1234100,
"cost": 0.15,
"state": "Charging",
"chargingPrice": {"kWhPrice": 0.150 },
"idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 } })

Central System sends
cost based on
DEFAULT price

DataTransfer.conf(Accepted)

loop [While offline]

calculate and display cost
based on unit prices

StopTransaction.req(txId, meterValue=1244000) User stops transaction

StopTransaction.conf()

Dislay final cost

DataTransfer.req("FinalCost", <txId>, 1.50, "$1.50 @ $0.150/kWh, $0.00 @ $1/h, TOTAL KWH: 10.0 TIME: 01:00H COST: $1.50")Central System
sends final cost

DataTransfer.conf(Accepted)

display total cost and quantity

Figure 6. Price calculation for offline started transaction

21

3.7.4. Price calculation for completely offline transaction

User-specific price is not known. Charge point cannot show running costs, unless it has been configured with

unit prices for the default pricing. User agrees to use default pricing. When Central System later receives the

offline start/stop transaction messages, it calculates cost using the default price scheme.

NOTE Alternatively, charging could be disallowed or be free of charge while offline.

Price calculation when transaction completely offline

Central System Charge Point

Default price was installed previously

ChangeConfiguration.req("DefaultPrice", "priceText": "0.15 $/kWh, idle fee after charging: 1 $/hr",
"chargingPrice": { "kWhPrice": 0.15, "hourPrice": 0.00, "flatFee": 0.00 })

ChangeConfiguration.conf(Accepted)

CP goes offline

Transaction is started while offline

Charge Point is offline

Authorize.req(<idToken>) User tries to authorize

lookup <idToken> in cache/
local list

CP authorizes offline

"No price information of user is known
Using default pricing. Agree? Y/N"

StartTransaction.req(1, <idToken>) User plugs in

CP caches start notification

loop [Display usage and cost]

calculate and display cost
based on locally measured
usage.
No idle fee calculation
while offline.

StopTransaction.req(txId) User stops transaction

Connection to Central System is restored

Charge Point back online

StartTransaction.req(1, <idToken>, meterValue=1234000) CP sends transaction messages

Central System notices that
transaction started offline

StartTransaction.conf(Accepted, <txId>)

StopTransaction.req(txId, meterValue=1244000)

Central System notices that
transaction finished offline

Calculates cost using default prices
10 kWh @ 0.15/kWh

StopTransaction.conf()

No FinalCost message is sent, because entire transaction was offline.
EV driver most likely not present anymore.

Figure 7. Price calculation for completely offline transaction

22

4. Tariff and Cost Features in OCPP 2.0.1

4.1. Displaying Price and Cost in OCPP 2.0.1

OCPP 2.0.1 offers the following standard messages to communicate pricing information to the charging station:

SetDisplayMessageRequest

OCPP provides a mechanism to display messages on a charging station. This can be used to display

generic (i.e. not customer-specific) pricing information. Alternatively, or when it is offline, the charging

station can display the price message that is configured in the TariffFallbackMessage of component

TariffCostCtrlr.

AuthorizeResponse

Customer-specific pricing information can be returned upon successful authorization. CSMS requests this

information at the eMSP of the associated charging contract that has just been authorized. It then formats

this a 512 character message for display at the charging station.

CostUpdatedRequest

CSMS sends periodic updates of the running total cost of a session with the CostUpdated message, which

is a single decimal value.

We extend this message with customData fields that provide the unit price information that is required to

do local running cost calculations. Details in CustomData Extension of CostUpdatedRequest.

TransactionEventResponse (eventType Update)

When the tariff changes during the transaction, for example, in case of a ‘time of use’ based price, then

CSMS sends the updated price in the updatedPersonalMessage of TransactionEventResponse.

TransactionEventResponse (eventType Ended)

CSMS shows the final total cost of a transaction in totalCost in the TransactionEvent message that marks

the end of the transaction. The field updatedPersonalMessage contains the text for the display that shows

the final price and its price components. It might also contain a URL that points to a location where the

user can retrieve an invoice. For convenience this URL can optionally be provided in a customData

qrCodeText field. A charging station that supports it, can then display the URL as a QR code for easy

scanning by the user.

A TransactionEventResponse with such a customData extension looks as follows:

 TransactionEventResponse("totalCost": 3.31,
 "updatedPersonalMessage": {"format": "UTF8", "language": "en",
 "content": "$2.81 @ $0.12/kWh, $0.50 @ $1/h,TOTAL KWH: 23.4 TIME: 03.50
COST: $3.31.
 Visit www.cpo.com/invoices/13546 for an invoice of your session."},
 "customData": {
 "vendorId": "org.openchargealliance.org.qrcode",
 "qrCodeText": "https://www.cpo.com/invoices/13546"
 }
)

23

NOTE

We recommend using a boolean device model variable QRCodeDisplayCapable on the

DisplayMessageCtrlr component to tell CSMS whether the station can display QR codes or

not.

4.1.1. CustomData Extension of CostUpdatedRequest

NOTE

A charging station that supports this customization will report the device model variable

CustomizationCtrlr.CustomImplementationEnabled with instance

"org.openchargealliance.costmsg" as true.

The CostUpdatedRequest is extended with customData fields. These are the same fields as are used in the

DataTransfer customization for OCPP 1.6, with the exception of the fields for cost and transaction id, which are

already part of the message, and without the trigger atCPStatus, because a charging station with OCPP 2.0.1

already sends a TransactionEventRequest with a meter value when the charging state changes.

The CSMS will send a CostUpdatedRequest as soon as the driver is authorized and the EV is connected to an

EVSE. At that point the tariff for the user and EVSE in use are known and a CostUpdatedRequest with

chargingPrice and other fields can be sent.

If all optional fields are used, it looks as follows:

CostUpdatedRequest (full example)

 CostUpdatedRequest("totalCost": 1.00, "transactionId": "12345",
 "customData": {
 "vendorId": "org.openchargealliance.costmsg",
 "timestamp": "2021-03-19T12:00:00Z", "meterValue": 1234000,
 "state": "Charging",
 "chargingPrice": {
 "kWhPrice": 0.123, "hourPrice": 0.00, "flatFee": 0.00 },
 "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 },
 "nextPeriod: {
 "atTime": "2021-03-19T19:00:00Z",
 "chargingPrice": {
 "kWhPrice": 0.100, "hourPrice": 0.00, "flatFee": 0.00 },
 "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 }
 }
 "triggerMeterValue": {
 "atTime": "2021-03-19T23:00:00Z",
 "atEnergykWh": 50.0,
 "atPowerkW": 0.1
 }
 }
)

The JSON in customData has the following structure:

Table 10. customData fields

24

Field Type Card. Description

vendorId string 1..1 Fixed value of "org.openchargealliance.costmsg" to identify

this customization.

timestamp dateTime 1..1 Timestamp of the meter value upon which this cost is based.

meterValue integer 1..1 Meter value (Wh) upon which this cost is based.

state string 1..1 "Charging" or "Idle". Determines which pricing components

are to be used.

chargingPrice ChargingPrice 1..1 Price components while charging.

idlePrice IdlePrice 0..1 Price components while not charging. Optional if no idle fee

is charged.

nextPeriod NextPeriod 0..1 Pricing for next period.

triggerMeterValue Triggers 0..1 Triggers to request a new TransactionEvent with meter

value.

Table 11. ChargingPrice

Field Type Card. Description

kWhPrice decimal 0..1 Price per kWh.

hourPrice decimal 0..1 Price per hour of charging.

flatFee decimal 0..1 Flat fee for (part of) charging session.

Table 12. IdlePrice

Field Type Card. Description

graceMinutes integer 0..1 Grace period in minutes before idle time is charged.

Grace minutes start counting from the timestamp of the

message in which state changed from "Charging" to "Idle".

hourPrice decimal 0..1 Price per hour while idle.

Table 13. NextPeriod

Field Type Card. Description

atTime dateTime 1..1 Time when these prices become active.

chargingPrice ChargingPrice 1..1 Price components while charging.

idlePrice IdlePrice 0..1 Price components while idle. Optional if no idle fee charged.

Table 14. Triggers

Field Type Card. Description

atTime dateTime 0..1 Time when a meter value must be sent.

atEnergykWh decimal 0..1 Consumed energy amount in kWh upon which a meter value

must be sent.

25

Field Type Card. Description

atPowerkW decimal 0..1 Power threshold in kW when meter value must be sent

when crossing in downward or upward direction. Can either

be used to trigger a meter value when vehicle stops charging

or when vehicle charges at a high power that requires a

different tariff.

It is recommended to implement a hysteresis around this

value to avoid repetitive triggers when the power fluctuates

around this level.

4.2. Device Model Settings for Tariff and Cost

The following table shows the device model variables on the component TariffCostCtrlr that need to be set

in order to activate the showing of tariff and cost on the charging station.

Table 15. Standard variables for TariffCostCtrlr in OCPP 2.0.1

Variable Instance Description

Enabled "Tariff" When true this enables showing of tariffs.

Enabled "Cost" When true this enables showing of cost.

TariffFallbackMessage Message (and/or tariff information) to be shown to an EV Driver

when there is no driver specific tariff information.

TotalCostFallbackMessage Message to be shown to an EV Driver when the Charging

Station cannot retrieve the cost for a transaction at the end of

the transaction.

Currency Currency used for tariff and cost information.

Some additional information is needed to let the charging station know which prices to use when a transaction is

started while the charging station is offline and cannot receive RunningCost messages. (See Sequence diagrams

for (partly) offline situations).

An advantage of the device model is, that new variables can easily be introduced. Rather than using a JSON

structure to communicate charging and idle prices for use when the charging station is offline, like we do with

DefaultPrice in OCPP 1.6, we can use variables of the TariffCostCtrlr component for this. The offline energy

and time prices are presented as instances of the OfflineChargingPrice variable. These are set by the CSMS and

are usually not changed often.

There is no "OfflineIdlePrice" variable, because when the charge station is offline, the CSMS cannot notify the

charge station that it should start using the idle price. See Idle Time During Transaction for more information on

idle time.

Table 16. New variables for TariffCostCtrlr for offline support

Variable Instance Description

TariffFallbackMessage "Offline" Optional alternative message to be shown to an EV Driver when

the charging station is offline.

26

Variable Instance Description

OfflineChargingPrice "kWhPrice" The energy (kWh) price for transactions started while offline.

OfflineChargingPrice "hourPrice" The time (hour) price for transactions started while offline.

4.3. Multi-language support for tariffs (new in v3)

NOTE

A charging station that provides multi-language support for tariffs will not only report the device

model variable CustomizationCtrlr.CustomImplementationEnabled with instance

"org.openchargealliance.costmsg" as true, but also the same variable with instance

"org.openchargealliance.multilanguage" as true.

4.3.1. Device Model Variables

In order to support multiple languages for TariffFallbackMessage and TotalCostfallbackMessage an instance per

message is created. Since the instance is used to designate the language, we can no longer use the instance

"Offline" to set the message to display when the charging station is offline. A new variable is introduced to hold

the offline fallback message.

Table 17. Changed TariffCostCtrlr variables for multi-language support

Variables Instance Type Description

TariffFallbackMessage "<language code>" string Message (and/or tariff information) to

be shown to an EV Driver when there is

no driver specific tariff information

available.

OfflineTariffFallbackMessage "<language code>" string Message (and/or tariff information) to

be shown to an EV Driver when

Charging Station is offline.

TotalCostFallbackMessage "<language code>" string Message to be shown to an EV Driver

when the Charging Station cannot

retrieve the cost for a transaction at the

end of the transaction.

E.g.:

Variables Instance Description

TariffFallbackMessage "en-US" "$0.12/kWh, no idle fee"

TariffFallbackMessage "es-MX" "$0.12/kWh, sin tarifa de inactividad"

TariffFallbackMessage "fr-CA" "$0,12/kWh, pas de frais d’inactivité"

Language codes shall be specified as RFC5646 (per OCPP 2.0.1). This allows eg en, es, and fr to be sufficient if

no regional variant is needed.

As instances aren’t dynamic in the device model, the station will need to expose all languages that it supports.

27

4.3.2. Multi-language driver/user specific tariffs

Driver specific tariffs / pricing information can be returned in the AuthorizeResponse message. The standard

message includes a field idTokenInfo of type IdTokenInfoType. That type contains the preferred language of this

customer and a personal message.

Table 18. IdTokenInfoType

Field Name Field Type Card. Description

status AuthorizationStatu

sEnumType

1..1 Authorization status of idToken

… <other fields>

language1 string[0-8] 0..1 Optional. Preferred user interface language of

identified user. Contains a language code as

defined in RFC5646.

language2 string[0-8] 0..1 Optional. Second preferred user interface

language…

personalMessage MessageContentTy

pe

0..1 Optional. Personal message that can be shown to

the EV Driver and can be used for tariff

information, user greetings etc.

personalMessage is the field that is suitable for sending tariff/pricing information to be displayed to the EV Driver.

Note that there is also a field, updatedPersonalMessage, in TransactionEventResponse of the same type that can be

used to send updated tariffs/pricing information.

Table 19. MessageContentType

Field Name Field Type Card. Description

format MessageFormatEn

umType

1..1 Required. Format of the message.

language string[0-8] 0..1 Optional. Message language identifier. Contains a

language code as defined in RFC5646.

content string[0-512] 1..1 Required. Message contents.

In order to support multiple languages, the following customData extension is added to the idTokenInfoType in

the AuthorizeResponse:

Table 20. IdTokenInfoType customData extension

Field Name Field Type Card. Description

custom

Data

vendorId string 1..1 Id of our extension.

"org.openchargealliance.multilanguage"

personalMessageExtra MessageContentT

ype

0..4 Personal messages in the extra languages.

28

4.3.3. Multi-language final cost

The TransactionEventResponse allows the CSMS to send the final cost and information about that. In the same

way as described above, the TransactionEventResponse will be extended with a customData extension, as

follows:

Table 21. TransactionEventResponse customData extension

Field Name Field Type Card. Description

custom

Data

vendorId string 1..1 Id of our extension.

"org.openchargealliance.multilanguage"

updatedPersonalMessageE

xtra

MessageContentT

ype

0..4 Personal messages in the extra languages.

4.3.4. Default UI language

The DisplayMessageCtrlr component is extended with a "Language" variable to report the languages supported

by the charging station UI.

DisplayMessageCtrlr.Language holds the default language. This can be changed by CSMS. The

variableCharacteristics.valuesList of DisplayMessageCtrlr.Language holds the list of supported languages. This

cannot be changed by CSMS.

A maximum of 4 additional messages in other languages can be provided in a personalMessage of an

AuthorizationResponse or an updatedPersonalMessage of a TransactionEventResponse.

The standard field idTokenInfo.personalMessage holds the message text in the default language. All other

languages are part of the custom field idTokenInfo.customdata.personalMessageExtra[].

Table 22. DisplayMessageCtrlr.Language configuration variable

Required yes

Component componentName DisplayMessageCtrlr

Variable variableName Language

variableAttributes mutability ReadWrite

variableCharacteristi

cs

dataType OptionList

Description Default language code, per RFC 5646, of this Charging Station. Value must be one of valuesList.

The set of language codes in valuesList is the full set of languages that is supported by the

Charging Station.

4.4. Idle Fees

NOTE Idle fee calculation is not a DMS requirement.

29

If the pricing model needs to calculate an idle fee, i.e. charge a fee for being connected after charging has

completed, then there are two different scenarios that can occur. There is idle time within the transaction and

idle time after the transaction has ended while the vehicle remains connected to the charging station.

4.4.1. Idle Time During Transaction

DMS or CTEP do not define how idle time should be measured if an idle fee is charged. It is up to the CSMS and

not the charging station, to decide when a transaction is considered to be in idle time. The reason for this is, that

charging may have been suspended on request of the CSMS due to a demand response event or a smart

charging algorithm. In that case it would not be fair to charge an idle fee to the customer.

CSMS can detect that an EV is no longer charging when it sees that meter values stay the same. Depending on

the meter value interval, it can take many minutes before it is noticed, unless the charging station sends a

TransactionEventRequest with a chargingState of SuspendedEV or SuspendedEVSE.

Detect idle by low power usage

CSMS can request the charging station to send a meter value whenever the vehicle charges with less than a

certain power by setting the atPowerkW trigger (e.g. at a value of 0.1 kW). If the charging station has been

configured to send not only the measurand "Energy.Active.Import.Register", but also "Power.Active.Import", then

the CSMS will immediately know from the power reading, that the EV has stopped charging. If only the register

reading is provided, then the CSMS will have to wait until the next meter value to know that the EV has stopped

charging. This is still quicker than via the regular meter intervals, though.

NOTE

A meter value is triggered to be sent everytime the atPowerkW threshold is crossed in upward

or downward direction. Some logic in the CSMS is required to determine the direction in which

the threshold is crossed.

Detect idle by chargingState change

When a charging station goes into a SuspendedEV or SuspendedEVSE state, then CSMS knows that charging has

paused when it receives a TransactionEventRequest with that chargingState. This message also contains the

current meter value.

Switch between Idle and Charging

When CSMS detects that charging has paused, it will send a new RunningCost message with state set to "Idle".

From that moment on, the charging station will charge the idle time according to the parameters in idlePrice.

When the EV resumes charging, the charging station may send a TransactionEventRequest with chargingState

"Charging" if it was in a suspended state before, or it will after some time send a TransactionEventRequest with a

new sampled meter value. (Sending of the TransacationEvent message with meter value can be forced by setting

the atPowerkW trigger). The CSMS will then send a new CostUpdatedRequest message with state set to

"Charging" and the charging station will use the chargingPrice information to calculate cost to show on the

display.

30

4.4.2. Idle Time When Transaction Has Ended

A major difference between OCPP 2.0.1 and 1.6 is, that OCPP 2.0.1 allows the CSO to configure the start and stop

moments of a transaction. When a CSO wishes to charge an idle fee for the period that an EV is not charging, but

remains connected to the charging station, then it suffices to set the configuration variable

TxCtrlr::TxStopPoint to "EVConnected". This will cause the transaction to remain active, until the EV

disconnects. For a charging station that has parking bay occupancy detection, this can even be set to

ParkingBayOccupancy, such that a fee can be charged for as long as the parking spot is occupied.

4.5. Direct Payment

Normally, it is the eMSP that invoices the customer, but in the event of direct payment with credit or debit card

or other means, then the CPO acts as an eMSP. In that case there must be a way to make a printable receipt

available to the customer upon request. (See [EVSE_S.2.6])

Since a charging station is not normally equipped with a printer, the solution is to display a message that directs

the customer to a website where the receipt can be downloaded.

The field updatedPersonalMessage in the TransactionEventResponse at end of the transaction contains a text

field to display a cost-breakdown and information on how to retrieve an invoice. Optionally, a customData field

qrCodeText can be added, that contains a URL for the invoice as a QR code that can be scanned by the user.

4.6. Sequence diagram showing OCPP 2.0.1 messages

The following diagram shows the sequence of events to report price and cost during a transaction, including the

optional part to record an idle fee. This assumes that the TxStartPoint and TxStopPoint have both been set

to "EVConnected".

31

Adding price info in CostUpdatedRequest using CustomData field

CSMS Charging Station

opt [Install new default price message]

SetDisplayMessageRequest(1, AlwaysFront, "$0.15 per kWh")

SetDisplayMessageResponse(Accepted)

AuthorizeRequest(<idToken>) User authorizes on #1

AuthorizeResponse(Accepted, "$0.123/kWh, idle fee: $1/h")CSMS returns
user-specific price

TransactionEventRequest(Started, CablePluggedIn, <txId>, ...) User plugs in

TransactionEventResponse()

CostUpdatedRequest(0.00, <txId>, (customData) "time": "2021-03-19T12:00:00Z", "meterValue": 1234000,
"state": "Charging",
"chargingPrice": {"kWhPrice": 0.123, "hourPrice": 0.00 }, "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 })

CSMS provides cost
and unit prices

CostUpdatedResponse()

loop [During transaction]

TransactionEventRequest(Updated, metervalue=1234100, <txId>, ...)

TransactionEventResponse()

CostUpdatedRequest(0.10, <txId>, (customData) "time": "2021-03-19T12:10:00Z", "meterValue": 1234100,
"state": "Charging",
"chargingPrice": {"kWhPrice": 0.123, "hourPrice": 0.00 }, "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 })

CostUpdatedResponse()

loop [Until meter meterValue]

calculate price
internally and
display

EV stops charging

opt [Calculate idle fee before stop]

TransactionEventRequest(Updated, metervalue=1235000, <txId>, ...)

TransactionEventResponse()

TransactionEventRequest(Updated, metervalue=1235000, <txId>, ...)

TransactionEventResponse()

CostUpdatedRequest(1.20, <txId>, (customData) "time": "2021-03-19T13:00:00Z", "meterValue": 1235000,
"state": "Idle",
"chargingPrice": {"kWhPrice": 0.123, "hourPrice": 0.00 }, "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 })

CSMS detects idle situation

CostUpdatedResponse()

start charging for idle after grace period

loop [Until stop]

loop [Until meter meterValue]

calculate price
for idle and display

CP sends meter value

TransactionEventRequest(Updated, metervalue=1235000, <txId>, ...)

TransactionEventResponse()

CostUpdatedRequest(1.20, <txId>, (customData) "time": "2021-03-19T13:00:00Z", "meterValue": 1235000,
"state": "Idle",
"chargingPrice": {"kWhPrice": 0.123, "hourPrice": 0.00 }, "idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 })

CostUpdatedResponse()

TransactionEventRequest(Update, StopAuthorized, <txId>, ...) User stops transaction

TransactionEventResponse()

opt [Calculate idle fee after stop until plugged out]

loop [Until plugged out]

CostUpdatedRequest(1.70, <txId>, (customData) "time": "2021-03-19T14:00:00Z", "meterValue": 1235000,
"state": "Idle",
"idlePrice": { "graceMinutes": 30, "hourPrice": 1.00 })

CSMS periodically sends
cost and unit price
for idle

CostUpdatedResponse()

loop [Until meter meterValue]

calculate price
internally and
display

TransactionEventRequest(Ended, EVCommunicationLost, ...) User plugs out

TransactionEventResponse(3.31, "$2.81 @ $0.12/kWh, $0.50 @ $1/h, TOTAL KWH: 23.4 TIME: 03.50 COST: $3.31")

Charging Station displays total cost and quantity

Figure 8. Using CustomData in CostUpdatedRequest

32

4.7. Offline behavior

Behavior in offline situations is the same as shown in Sequence diagrams for (partly) offline situations for OCPP

1.6.

33

5. Checklist Items Requiring Attention

Analysis of the checklist learns that almost all relevant information can be provided using the above-mentioned

messages of OCPP.

The following checklist items require special attention, since they refer to data that cannot be transferred

between charging station and CSMS using OCPP. The data can be communicated using other means, however.

Checklist item 1.7: Selection of Unit Price

There is no message in OCPP to communicate a choice of unit price by the user, if the charging station

supports a choice between multiple unit prices. However, it is not required to be able to show multiple

prices. In fact this is not needed for the most common situation, namely to distinguish credit card

payment and eMSP charge card payment. The credit card tariff (for which the CPO acts as eMSP) can be

shown as the default tariff on the charging station. Only when a customer authorizes using an eMSP

charge card will CSMS retrieve the tariff that applies for that eMSP and communicate it on the charging

station.

If there is a need to select a price from multiple unit prices, for example, to distinguish between regular

charging and smart charging, then the following solutions are possible:

• Provide a mobile phone app to display and select the price to use. This app communicates the

selected price with its own protocol to the CSMS.

• Create a customization using OCPP device model or DataTransfer to communicate the user’s

choice.

Checklist item 1.8: In case TOU unit price modifications are allowed

In case TOU unit price modifications are allowed, the following customer options shall be offered before a

charging session could be started:

1. Customer accepts TOU based rate increases

2. Customer elects to terminate charge session when a TOU rate increase occurs.

3. Customer does not accept any TOU option.

There is no message in OCPP to communicate whether the customer accepts TOU based rate increases.

This is, of course, only an issue when TOU based rate increases are present on the charging station. If that

is the case, then one of the above-mentioned solutions, like a smartphone app or an OCPP customization,

is needed.

Checklist item 1.31: The system must provide a receipt

For transactions conducted with point-of-sale systems or devices activated by credit cards, debit cards,

electronic payment (ApplePay) or other electronic payment method recorded representation containing

information about the transaction shall be available to the customer as outlined in the following items.

Printable receipt must always be available to the customer upon request. The system must provide a

receipt to be made available to the customer at the completion of the transaction through either:

34

• a built-in recording element OR

• a separate recording element that is part of the system OR

• an electronic device (phone, computer, etc.) accessible by the system.

Since a charging station is not normally equipped with a printer, the solution is to display a message that

directs the customer to a website where the receipt can be downloaded.

35

6. Appendix: Relevant Requirements per Section

This section lists the checklist requirements that are relevant in relation to OCPP. A comment in italic font

describes how OCPP can help to fulfill this checklist requirement.

Section 1. Primary Indicating and Recording Elements

S.1.2 EVSE indicating Elements

1.1. An electronic digital indicating element shall

• 1.1.2. Displays for a minimum of 15 seconds after activation by the user

• 1.1.3. All indications and representations of energy sold are clearly identified

• 1.1.4. All indications and representations of time-based charges are clearly identified

OCPP 1.6 Can be achieved by setting a custom configuration key that holds the price

description. During the transaction unit prices are provided in the RunningCost message.

See Displaying Price and Cost in OCPP 1.6

OCPP 2.0.1 Can be achieved with DisplayMessageRequest or

AuthorizeResponse.PersonalMessage. During the transaction unit prices are provided in the

CostUpdated message. See Displaying Price and Cost in OCPP 2.0.1

S.1.3.2 Value of Smallest Unit

The value of the smallest unit of indicated delivery by an EVSE, and recorded delivery if the EVSE is

equipped to record, shall be no greater than 0.0005 MJ or 0.0001 kWh.

OCPP 1.6 The meter values in StartTransaction and StopTransaction are integer values in Wh. In order

to provide these meter values in 0.1 Wh accuracy, the start and stop meter values must be provided in the

transactionData field of StopTransaction.req.

OCPP 2.0.1 Meter values in TransactionEventRequests are decimals and can be provided in 0.1 Wh

accuracy.

S.2.4.3 Selection of Unit Price

1.7. An EVSE may be equipped with means for selecting more than one unit price, provided

that the selected unit price cannot be changed after the initial flow begins.

OCPP 1.6 & OCPP 2.0.1 OCPP can provide a message for the selection of multiple prices,

however, it does not provide a means for the user to select one price or the other. However, it is not

required to be able to show multiple prices. In fact this is not needed for the most common

situation to distinguish credit card payment and eMSP charge card payment. The credit card tariff

(for which the CPO acts as eMSP) can be shown as the default tariff on the charging station. Only

when a customer authorizes using an eMSP charge card will CSMS retrieve the tariff that applies

for that eMSP and communicate it on the charging station.

If there is a need to select a price from multiple unit prices, for example, to distinguish between

regular charging and smart charging, then the following solutions are possible:

• Provide a smartphone app to display and select the price to use. This app communicates

the selected price with its own protocol to the CSMS.

36

• Create a customization using OCPP device model or DataTransfer to communicated the

user’s choice.

1.8. The selected unit price must be made clearly evident on the EVSE. Once selected the

unit price cannot be changed at the point of sales prior to or during the delivery except

when the change is triggered by a notified Time Of Use (TOU) modification.

If TOU base rated increases are present on the charging station, then the customer

must be allowed to select one of the following options:

1.8.1. Customer accepts TOU based rate increases

1.8.2. Customer elects to terminate charge session when a TOU rate increase occurs.

1.8.3. Customer does not accept any TOU option.

OCPP 1.6 & OCPP 2.0.1 It is not required to support TOU based rate changes, but if they

are implemented, then the solutions mentioned in the previous paragraph (1.7) can be used

to facilitate this.

1.10. When a delivery is completed, the total price and quantity for that transaction shall be

displayed on the face of the EVSE for at least 5 minutes or until the next transaction is

initiated by using controls on the device or other user-activated (e.g., customer-activated)

controls.

OCPP 1.6 The total price when delivery is complete is the last update of total price, that the

charging station received via the custom message that was implemented for that purpose.

Quantity in kWh and/or time is known by the charging station. Both can be displayed by charging

station. See Displaying Price and Cost in OCPP 1.6

OCPP 2.0.1 The total price has been sent by CSMS as part of the last TransactionEventRequest

message. Quantity in kWh and/or time is known by the charging station. Both can be displayed by

charging station. See Displaying Price and Cost in OCPP 2.0.1

S.2.3. Provisions for Power Loss

1.15. The quantity and total sales price shall be recallable for 15 minutes after the power

failure.

OCPP 1.6 & OCPP 2.0.1 Since price calculation is done at the CSMS, this information is not lost

during a power failure at the charging station.

1.17. The quantity and total sales price values shall be correct if the delivery is continued

after a power failure.

OCPP 1.6 & OCPP 2.0.1 Since price calculation is done at the CSMS, this information is not lost

during a power failure at the charging station.

S.2.4.1. Display of Unit Price

1.25. Means shall be provided to display the unit price on the face of the device.

OCPP 1.6 Can be achieved by setting a custom configuration key that holds the price description.

See Displaying Price and Cost in OCPP 1.6

OCPP 2.0.1 This can be displayed via the DisplayMessageRequest or

37

AuthorizeResponse.PersonalMessage. The display can either display prices for all units as one

message or let the use step through the various units. CSMS will send all information in one

message, though. See Displaying Price and Cost in OCPP 2.0.1

1.26. The unit price shall be expressed in dollars and decimals of dollars using a dollar sign.

OCPP 1.6 Can be achieved by setting a custom configuration key that holds the currency.

OCPP 2.0.1 The currency is configured via the device model variable

TariffCostCtrlr::Currency.

S. 2.4.3. Selection of Unit Price

1.29. Prior to delivery using controls on the device. OR

1.30. Through deliberate action of the purchaser using

1. controls on the device;

2. personal or vehicle mounted electronic equipment communicating with the system; or

3. verbal instructions

OCPP 1.6 & OCPP 2.0.1 The same remarks as for checklist item 1.7 apply here.

S.2.6. Recorded Representations

For transactions conducted with point-of-sale systems or devices activated by credit cards, debit cards,

electronic payment (ApplePay) or other electronic payment method recorded representation containing

information about the transaction shall be available to the customer as outlined in the following items.

Printable receipt must always be available to the customer upon request.

1.31. The system must provide a receipt to be made available to the customer at the completion of

the transaction through either

1.31.1. a built-in recording element OR a separate recording element that is part of the system OR

an electronic device (phone, computer, etc.) accessible by the system.

OCPP 1.6 & OCPP 2.0.1 Charging station can display a message to point the customer to a website

where the receipt can be downloaded.

Section 2. Computing

No requirements for OCPP.

Section 3. Measuring Elements

No requirements for OCPP.

Section 4. Test of the EVSE System (Hb44 N and T Sections)

No requirements for OCPP.

Annex # EVSEs with parking time charging functionality

1.1 The EVSE shall indicate and record, the time in minutes for time intervals of 60 minutes or less and in

hours and minutes for time intervals greater than 60 minutes.

OCPP 1.6 & OCPP 2.0.1 EVSE can display parking time continuously, since start of transaction. CSMS also

38

knows when transaction starts and ends and can add this to the receipt.

[1] NCWM Publication No.14, National Type Evaluation Program: Technical Policy Checklists and Test Procedures, draft

201902

[2] California Type Evaluation Program

[3] In line with the terminology of OCPP 1.6 we will use Central System and charge point, instead of CSMS and charging

station in this section.

39

	OCPP & California Pricing Requirements
	Table of Contents
	1. Introduction
	2. Cost Calculation in OCPP
	3. Tariff and Cost Features in OCPP 1.6
	3.1. Displaying Price and Cost in OCPP 1.6
	3.2. Multi-language support for tariffs (new in v3)
	3.3. Timezone for Display
	3.4. Idle Fees
	3.5. Direct Payment
	3.6. Sequence diagrams showing the OCPP 1.6 customizations
	3.7. Sequence diagrams for (partly) offline situations

	4. Tariff and Cost Features in OCPP 2.0.1
	4.1. Displaying Price and Cost in OCPP 2.0.1
	4.2. Device Model Settings for Tariff and Cost
	4.3. Multi-language support for tariffs (new in v3)
	4.4. Idle Fees
	4.5. Direct Payment
	4.6. Sequence diagram showing OCPP 2.0.1 messages
	4.7. Offline behavior

	5. Checklist Items Requiring Attention
	6. Appendix: Relevant Requirements per Section

