

# OCPP



## OCPP Security Operations Guide

v1.0, January 2026

# Table of Contents

|                                                                                                            |    |
|------------------------------------------------------------------------------------------------------------|----|
| 1. Introduction .....                                                                                      | 2  |
| 2. Regulations vs. security measures .....                                                                 | 3  |
| 2.1. Introduction to regulations .....                                                                     | 3  |
| 2.1.1. Radio Equipment Directive (RED) .....                                                               | 3  |
| 2.1.2. Cyber Resilience Act (CRA) .....                                                                    | 5  |
| 2.1.3. Measuring Instruments Directive (MID) .....                                                         | 6  |
| 2.1.4. NIS2 .....                                                                                          | 6  |
| 2.1.5. Network Code on Cybersecurity (NCCS) .....                                                          | 7  |
| 2.1.6. ENCS Security Requirements .....                                                                    | 8  |
| 2.1.7. Cybersecurity Maturity Model Certification (CMMC) .....                                             | 8  |
| 2.1.8. The NIST Handbook 44 .....                                                                          | 9  |
| 2.1.9. California Consumer Privacy Act (CCPA) .....                                                        | 10 |
| 2.1.10. Conclusion .....                                                                                   | 10 |
| 2.2. Regulations vs. security measures .....                                                               | 11 |
| 2.3. Demonstrating implementation of security requirements .....                                           | 13 |
| 2.4. Future versions .....                                                                                 | 13 |
| 3. Guidance for both Charging Stations and Charging Stations Management Systems .....                      | 14 |
| 3.1. Introduction .....                                                                                    | 14 |
| 3.2. Trustworthy Time .....                                                                                | 14 |
| 3.3. Cryptography .....                                                                                    | 14 |
| 3.3.1. Curves for ECDSA certificates .....                                                                 | 14 |
| 3.3.2. Use of FIPS-validated cryptography .....                                                            | 15 |
| 3.3.3. Key updates .....                                                                                   | 15 |
| 3.4. Avoid use of unencrypted, unauthenticated FTP, HTTP for log file uploads and firmware downloads ..... | 15 |
| 3.5. Use of CommonName vs SAN .....                                                                        | 16 |
| 3.5.1. Advantages and disadvantages .....                                                                  | 16 |
| 3.5.2. Implementation options .....                                                                        | 17 |
| 3.5.3. Identifying the OCPP service in the SAN .....                                                       | 17 |
| 3.6. Secure coding .....                                                                                   | 18 |
| 3.7. Security testing .....                                                                                | 18 |
| 4. Guidance for Charging Station .....                                                                     | 20 |
| 4.1. Risk assessment .....                                                                                 | 20 |
| 4.2. Use of Security Profiles .....                                                                        | 20 |
| 4.3. Security Profile downgrades .....                                                                     | 21 |
| 4.4. Storing information .....                                                                             | 21 |
| 4.4.1. Storing passwords .....                                                                             | 21 |
| 4.4.2. Storing (and sending) personal information .....                                                    | 22 |
| 4.5. Wildcard certificates .....                                                                           | 22 |
| 4.6. Use unique credentials during manufacturing .....                                                     | 22 |
| 4.7. Preinstalled well-known root CA certificates .....                                                    | 23 |
| 4.8. Secure firmware updates .....                                                                         | 24 |
| 4.9. Secure storage mechanisms .....                                                                       | 24 |
| 4.10. Local Security log .....                                                                             | 25 |
| 4.11. Vulnerability handling .....                                                                         | 25 |
| 4.12. Hardening charging stations .....                                                                    | 26 |
| 4.13. Access control for local maintenance .....                                                           | 27 |
| 4.14. Network resilience .....                                                                             | 27 |
| 4.15. Backups and recovery .....                                                                           | 27 |
| 5. Guidance for Charging Station Management System .....                                                   | 28 |
| 5.1. Risk assessment for CPOs .....                                                                        | 28 |

|                                                                        |    |
|------------------------------------------------------------------------|----|
| 5.2. Use of Security Profiles .....                                    | 28 |
| 5.3. Security monitoring .....                                         | 29 |
| 5.4. Wildcard certificates .....                                       | 30 |
| 5.5. Tampering alarms .....                                            | 30 |
| 5.6. Private key leakage process .....                                 | 30 |
| 5.7. Report cybersecurity incidents.....                               | 31 |
| 5.8. Setting up a cybersecurity management system .....                | 31 |
| 5.9. Role-Based Access Control and logging .....                       | 31 |
| 5.10. Supply chain security controls.....                              | 32 |
| 5.11. Secure firmware updates .....                                    | 33 |
| 6. TLS versions and security policies .....                            | 34 |
| 6.1. Expected updates to TLS.....                                      | 34 |
| 6.1.1. TLS version 1.3.....                                            | 34 |
| 6.1.2. Phasing out cipher suites without perfect forward secrecy ..... | 34 |
| 6.1.3. Post quantum cryptography .....                                 | 35 |
| 6.2. Managing backwards compatibility.....                             | 35 |
| 6.2.1. Security profiles vs. security policies .....                   | 36 |
| 6.2.2. Process for connecting.....                                     | 36 |
| 6.2.3. Process for changing policies .....                             | 36 |
| 6.3. OCPP additions to the Device Model.....                           | 37 |
| 7. Securing other services .....                                       | 38 |
| 7.1. General security requirements .....                               | 38 |
| 7.2. Protocol configuration.....                                       | 38 |
| 7.2.1. FTP configuration .....                                         | 38 |
| 7.2.2. HTTP .....                                                      | 38 |
| 7.2.3. NTS .....                                                       | 39 |
| 7.2.4. DNS .....                                                       | 39 |
| 7.2.5. SSH .....                                                       | 39 |
| 7.3. Certificate management.....                                       | 39 |
| 7.4. Using DANE .....                                                  | 40 |
| 7.5. Security events for certificate management .....                  | 40 |
| 8. Restricting access to critical operations.....                      | 41 |
| 8.1. Possible solutions .....                                          | 41 |
| 8.1.1. RBAC in the CSMS GUI .....                                      | 42 |
| 8.1.2. Logging access to privileged functions .....                    | 42 |
| 8.1.3. Changes through firmware updates .....                          | 42 |
| 8.1.4. Signing messages with the CSMS private key.....                 | 42 |
| 8.1.5. Signing messages with other keys .....                          | 43 |
| 8.2. Recommended solutions .....                                       | 43 |
| 9. Referenced documents .....                                          | 45 |
| 10. APPENDIX A: TLS policies for OCPP .....                            | 48 |
| 10.1. OCPP-TLS12-2020.....                                             | 48 |
| 10.1.1. General.....                                                   | 48 |
| 10.1.2. TLS version.....                                               | 48 |
| 10.1.3. Cipher suites .....                                            | 49 |
| 10.1.4. Certificates .....                                             | 50 |
| 10.1.5. Other TLS settings.....                                        | 51 |
| 10.2. OCPP-TLS12-2025.....                                             | 51 |
| 10.2.1. General.....                                                   | 51 |
| 10.2.2. TLS version.....                                               | 51 |
| 10.2.3. Cipher suites .....                                            | 52 |
| 10.2.4. Certificates .....                                             | 53 |

|                                                                              |    |
|------------------------------------------------------------------------------|----|
| 10.2.5. Other TLS settings.....                                              | 54 |
| 10.3. OCPP-TLS13-2025.....                                                   | 54 |
| 10.3.1. General.....                                                         | 54 |
| 10.3.2. TLS version.....                                                     | 54 |
| 10.3.3. Other TLS settings.....                                              | 55 |
| 10.4. References .....                                                       | 55 |
| 11. APPENDIX B: Device Model Variables .....                                 | 56 |
| 11.1. SecurityCtrlr.SecurityPolicy.....                                      | 56 |
| 11.2. SecurityCtrlr.ActiveCSMSSecurityPolicy .....                           | 56 |
| 12. APPENDIX C: Overview of security issues found in Charging Stations ..... | 57 |

---

# OCA White Paper

---

Copyright © 2026 Open Charge Alliance. All rights reserved.

# 1. Introduction

Charging infrastructure is considered critical infrastructure and consequences of security issues can have far-reaching consequences for the electricity grid and society. The OCPP specification therefore has included security as a part of OCPP 2.x and also backported the security to OCPP 1.6 using the OCPP Security Whitepaper (officially titled: "*Improved security for OCPP 1.6-J*"). However, providing security requirements and recommendations in the OCPP specification alone has proven not to be sufficient for vendors to implement secure solutions. Therefore, this Operations Guide provides guidance to implementers of OCPP Charging Stations and CSMSs, to build more secure solutions, keeping in mind interoperability. This guidance provides recommendations that can also be found in the OCPP specification *and* additional guidance to use OCPP features in a secure way. To make clear what is already in the specification and what is not, sections / text blocks are marked as:

- "*About the OCPP specification*" - this means that this is already described in the OCPP specification.
- "*Upcoming OCPP specification updates (errata & additions)*" - this indicated that this is expected to be added to the next OCPP version (and are already possible in the current OCPP 2.x versions as extensions).
- "*OCA recommendations beyond OCPP*" - this concerns recommendations that are out of scope of OCPP, but are needed for a security implementation of OCPP in a Charging Station or CSMS.

Security is becoming part of more and more regulations. For this reason, the next chapter [Regulations vs measures](#) discusses a number of regulations that have been analyzed. An overview is provided on what security measures must be taken for each of these regulations.

**NOTE**

This Security Operations Guide refers to requirements from the OCPP specification. In case of a conflict in the numbered requirements referenced in this document and the main OCPP 2.x specification, the OCPP 2.x specification is leading.

## 2. Regulations vs. security measures

### 2.1. Introduction to regulations

The European Union is setting more strict regulations for cybersecurity. Charging Station manufacturers already need to comply with the [Radio Equipment Directive \(RED\)](#) cybersecurity requirements and will soon need to meet the requirements in the [Cyber Resilience Act \(CRA\)](#) and [Measuring Instruments Directive \(MID\)](#) if they want to sell Charging Stations in the EU. Charge Point Operators in the EU will be seen as critical infrastructure and will have to meet the [NIS2](#) and [NCCS](#) requirements. The corresponding North American regulations are still less strict, but do include some relevant requirements. For instance, the Cybersecurity Information Sharing Act (CISA) which facilitates information sharing between government and private sector but is not setting technical controls. In Canada, the Canadian Cyber Security Strategy and Critical Infrastructure Protection (CIP) programs aim to improve cybersecurity for critical sectors but lack a unified directive like NIS2. However, in the United States, several states have their own cybersecurity laws. The California Consumer Privacy Act (CCPA) is one of them and is of relevance for charging stations implementing OCPP.

In this chapter the relevant security regulations are shortly discussed and the relation to the security requirements and recommendations from this whitepaper is presented. The security regulations that have been analysed for coverage by OCPP are the following:

| Regulation                                                        | Year      | Reference to original regulation            |
|-------------------------------------------------------------------|-----------|---------------------------------------------|
| <a href="#">Radio Equipment Directive (RED)</a>                   | 2024      | [EN_18031-1], [EN_18031-2] and [EN_18031-3] |
| <a href="#">Cyber Resilience Act (CRA)</a>                        | 2024      | [CRA]                                       |
| <a href="#">Measuring Instruments Directive (MID)</a>             | 2014/2024 | [MID-1] and [MID-2]                         |
| <a href="#">NIS2</a>                                              | 2022      | [NIS-2]                                     |
| <a href="#">Network Code on Cybersecurity (NCCS)</a>              | 2024      | [NCCS]                                      |
| <a href="#">Cybersecurity Maturity Model Certification (CMMC)</a> | 2025      | [CMMC]                                      |
| <a href="#">California Consumer Privacy Act (CCPA)</a>            | 2024      | [CCPA]                                      |
| The <a href="#">NIST Handbook 44</a>                              | 2025      | [NIST]                                      |

In the following sections, each regulation is shortly introduced. After the introduction of the regulations, an overview of the regulations vs the security requirements and recommendations described in this Operations Guide is given. Vendors that need to adhere to a regulation can use this as a checklist to make their OCPP implementation comply to a regulation.

#### 2.1.1. Radio Equipment Directive (RED)

The Radio Equipment Directive (2014/53/EU), published by DG GROW in 2014, ensures that devices using radio communication meet cybersecurity requirements before being placed on the EU market. It was passed in 2014 to harmonize the requirements for radio equipment in the EU. In 2021, the European Commission extended the directive with new cybersecurity requirements, and from August 2025 these requirements became mandatory for all internet-connected radio equipment, including charging stations.

The RED sets essential requirements for when radio equipment can be sold on the European internal market. These requirements include three points that can be related to cybersecurity in Article 3(3):

- (d) radio equipment does not harm the network or its functioning nor misuse network resources, thereby causing an unacceptable degradation of service;
- (e) radio equipment incorporates safeguards to ensure that the personal data and privacy of the user and of the subscriber are protected;
- (f) radio equipment supports certain features ensuring protection from fraud;

These requirements only apply to classes of products after the Commission adopts a delegated act to supplement the RED. In 2021, the Commission passed a delegated act that made these three points applicable *"to any radio equipment that can communicate itself over the internet, whether it communicates directly or via any other equipment ('internet-connected radio equipment')"* with the restriction that point (e) only applies if the equipment processes personal data as defined in the GDPR, and point (f) only applies if the equipment allows the user to transfer money, monetary value or virtual currency. The requirements apply from 1 August 2025 .

Manufacturers need to determine if their charging stations fit the criteria in the delegate act. Note that a device is considered internet-connected if it can communicate over the internet, even when it does not communicate over the internet in normal use. So, even charging stations that would normally be used on segregated telecom networks would be considered internet-connected if they can be used with a public SIM card. Many charging stations could also be considered to process personal data in the form or UUID and transaction data. At the time of writing this Operations Guide, it is not entirely clear if charging stations are considered to transfer money or monetary value, but they are involved in financial transaction. So, interpretations could be possible in which all three points (d), (e), and (f) would apply to charging stations.

Manufacturers need to demonstrate compliance with the RED through a conformity assessment. There are different conformity assessment modules allowed. Module A, internal production control, is easiest to apply, as manufacturers may do a self-assessment. Using one of the other options (module B+C or module H) would require independent tests and audits. There is limited capacity available for these since all radio equipment will need to go through the conformity assessment by 1 August 2025. Manufacturers may, however, only use module A if they follow a harmonized standard. A harmonized standard for cybersecurity was adopted by the Commission on 28 January 2025 . The standard, EN 18031, consists of three parts:

- **EN 18031-1** covers point (d) and applies to all internet-connected radio equipment.
- **EN 18031-2** covers point (e) applies to internet-connected radio equipment processing personal data.
- **EN 18031-3** covers point (f) and applies to internet-connected radio equipment that allows users to transfer money, monetary value, or virtual currency.

The standards mostly contain requirements comparable to those in the ENCS requirements [ENCS Security Requirements](#) and that charging stations must meet, such as not allowing security profile 1 on unsecured networks. Please refer to [ENCS Security Requirements](#) for an overview of the security requirements from the three standards that are relevant for CSMSS and Charging Stations.

The European Commission has stated that the RED delegated act will be repealed once the CRA becomes applicable on 11 December 2027.

## 2.1.2. Cyber Resilience Act (CRA)

The Cyber Resilience Act (2024/2847) was proposed by DG CONNECT to establish mandatory cybersecurity requirements for all products with digital elements. It came into force in the EU on December 10, 2024. As of December 11, 2027, manufacturers may only sell products in the EU if they meet these requirements.

The Cyber Resilience Act extends the idea of the RED delegated act to now cover all products with digital elements, defined as "software or hardware product and its remote data processing solutions, including software or hardware components being placed on the market separately." The essential cybersecurity requirements in the CRA are however different than for the RED. They are divided into two types:

1. *Cybersecurity requirements relating to the properties of products with digital elements* covering the technical properties of the products. The CRA includes a high-level risk of these technical requirements. But manufacturers only have to apply them where applicable and based on a risk assessment they perform.
2. *Vulnerability handling requirements* covering the vulnerability handling process at the manufacturer. These are quite comprehensive. But they are not very precise on how vulnerabilities must be prioritized or how quickly they must be mitigated.

While the CRA and RED have similar conformity assessment modules, the rules for which modules manufacturers may use are different. Under the CRA, the available modules depend on the categorization of products. If a product is classified as important or critical, only the stricter conformity assessment modules may be used. At the time of writing this Operations Guide, it is not clear how charging stations will be categorized. The CRA contains lists of important and critical product categories in Annexes III and IV. But the product categories will only be defined in an implementing act that the Commission still needs to adopt.

Based on the public consultation for this implementing act, charging stations could be considered critical if they fall under the product category hardware devices with security boxes. The draft definition of this category in the consultation was as follows:

*"Hardware products with digital elements that incorporate a hardware physical envelope providing countermeasures against physical attacks, including tamper evidence, resistance or response, and that are designed to securely store, process, and manage sensitive data and cryptographic operations. This category includes but is not limited to payment terminals, hardware security modules, and tachographs that meet the above definition."*

Most public charging stations could be considered to fall under this definition, as the casing provides a hardware physical envelope that protects against physical attacks. But the legal interpretation of the definition is not yet settled.

If charging stations are categorized as critical under the final implementing act, manufacturers will need to show compliance with the CRA through one of the stronger conformity assessment modules. Either they need to undergo independent testing under module B (EU-type examination), or they need to implement a quality management system for the cybersecurity requirements under module H (Conformity based on full quality assurance). Additionally, the Commission could make it mandatory that the products undergo cybersecurity certification, possibly through Common Criteria.

Harmonized standards will be developed for the critical product categories by October 2026. For the hardware devices with security boxes, this standard will likely be geared toward payment terminals, hardware security modules, and tachographs. So, it may not be suitable for charging stations. It is not clear if the harmonized standard will be in any way related to the EN 18031 standard for the RED. For critical products, manufacturers

---

are not obliged to follow the harmonized standard. But notified bodies - organizations designated by an EU member state to carry out conformity assessment procedures for certain products before they are placed on the market - may still expect them to.

In summary, at the moment of writing this Operations Guide, it is not yet clear under what category of the CRA charging stations will fall. But at least manufacturers will need to perform a risk assessment and implement the vulnerability handling procedures. If charging stations are classified as critical, they will additionally have to arrange a conformity assessment by a notified body.

### **2.1.3. Measuring Instruments Directive (MID)**

The Measuring Instruments Directive (2014/32/EU), developed by DG GROW and applicable as of 20 April 2016, harmonizes laws for making available measuring instruments on the market in the EU. At the end of 2024, the Commission adopted a proposal to extend the MID to electric vehicle supply equipment.

The MID contains some requirements related to cybersecurity under the essential requirements in Annex I

#### *8. Protection against corruption*

*8.1. The metrological characteristics of a measuring instrument shall not be influenced in any inadmissible way by the connection to it of another device, by any feature of the connected device itself or by any remote device that communicates with the measuring instrument.*

*8.2. A hardware component that is critical for metrological characteristics shall be designed so that it can be secured. Security measures foreseen shall provide for evidence of an intervention.*

*8.3. Software that is critical for metrological characteristics shall be identified as such and shall be secured. Software identification shall be easily provided by the measuring instrument. Evidence of an intervention shall be available for a reasonable period of time.*

*8.4. Measurement data, software that is critical for measurement characteristics and metrologically important parameters stored or transmitted shall be adequately protected against accidental or intentional corruption.*

*8.5. For utility measuring instruments the display of the total quantity supplied or the displays from which the total quantity supplied can be derived, whole or partial reference to which is the basis for payment, shall not be able to be reset during use.*

Manufacturers can show conformity with the MID by implementing so-called normative documents, similar to the harmonized standards for the RED and CRA. Normative documents for the MID are developed by the International Organization of Legal Metrology (OIML).<sup>[1]</sup> The OIML developed in 2022 the guide OIML G 22 for Electric Vehicle Supply Equipment (EVSE). This is not yet a normative document for the MID, as it would first have to be adopted by the European Commission. But the structure and scope suggest it was developed with future MID adoption in mind.

### **2.1.4. NIS2**

The NIS2 Directive (EU 2022/2555), coordinated by DG CONNECT was published in December 2022 and member states are currently transposing it into national law. It aims to strengthen cybersecurity across the EU by introducing more stringent requirements for a broader range of sectors. Charge point operators are covered by the NIS2 directive as operators of recharging points, and they do fall under the electricity subsector. So, the risks they create to the electricity sector will be regulated. The European Commission passed the NIS2 directive as the successor to the NIS directive from 2016.

Unlike the original NIS directive, the NIS2 directive does not have thresholds for when an entity is in scope. All CPOs are considered as "essential" entities, unless they are below a certain size in terms of staff, revenue, and assets. If they are below that size threshold, they are considered as "important"<sup>[2]</sup>.

The NIS2 directive requires CPOs to take appropriate and proportionate measures to manage cybersecurity risks. It leaves relatively open what these measures should be. Only a very high-level list of topics to be covered is included in Article 21(2).

Many member states are however developing their own sets of mandatory measures that are much more detailed. Examples of measures developed by different member states for the original NIS:

- Spanish National Security Scheme (see [\[SNSS\]](#))
- Italian Security Measures in Annex B of DCPM 81/2021 (see [\[DCPM\]](#))
- French security rules (see [\[FSR\]](#))

These rules are however now being updated because of the introduction of the NIS2 directive. CPOs should monitor the controls for the countries in which they are active. It is difficult to extract general technical measures for the OCPP operational security guidelines at this point. Besides taking risk management measures, CPOs will also have to report cybersecurity incidents. The reporting thresholds are defined by each EU member state.

## 2.1.5. Network Code on Cybersecurity (NCCS)

The Network Code on Cybersecurity (EU 2024/1366) is a sector-specific cybersecurity regulation. It is a delegated act developed by DG ENER and published in March 2024. It aims to create a European baseline for the cybersecurity of cross-border electricity flows. CPOs are in scope of the NCCS, but they only need to apply their measures if they are large enough to cause cross-border disruptions to the electricity sector. As the European electricity system is connected, a cyber-attack in one member state could cause problems in the electricity system of another. The NCCS should manage these risks in a coordinated way and enforce a harmonized level of cybersecurity.

CPOs are in scope of the NCCS. They, however, only need to apply their measures if they are large enough to cause cross-border disruptions to the electricity sector. This is determined through so-called high- and critical-impact thresholds. A provisional list of thresholds has been published by ENTSO-E (see [\[ENTSO-E\]](#)). The thresholds differ per member country, the lowest "high-impact" thresholds that apply in some member countries are 250 MW of total charging capacity of all charging points operated by the CPO.

As for the NIS2 directive, the NCCS will require CPOs to take measures to manage cybersecurity risks. The measures are more detailed at a European level to create a harmonized security baseline. They include:

- Setting up a cybersecurity management system for instance based on ISO/IEC 27001
- Performing structured risk assessments taking into account the possible impact on the electricity system
- Implementing minimum and advanced cybersecurity controls selected based on a regional cybersecurity risk assessment
- Implementing supply chain security controls to ensure secure procurement of new components and systems, such as charging stations

---

The measures will not include detailed technical requirements. Procurement recommendations could be developed to help entities meet the supply chain controls. These could include recommendations on using technical requirements during procurement. But the recommendations are not binding.

CPOs will also need to report cybersecurity incidents that may cause disruptions to the electricity system. Exact thresholds for reporting still need to be defined.

## 2.1.6. ENCS Security Requirements

ElaadNL - the Dutch knowledge and innovation center for smart charging infrastructure - and ENCS<sup>[3]</sup> - the European Network for Cyber Security, a non-profit organization with the mission to improve cyber security by sharing knowledge - have developed a set of security requirements for charging infrastructure. The two main documents are:

- EV-211: Security requirements from IEC 62443 for EV charging infrastructure. Local governments can use these requirements when procuring public charging stations from a Charge Point Operator. (see [\[EV-211\]](#) for details and link to document)
- EV-311 Security requirements from IEC 62443 for procuring EV charging stations. CPOs and others can use these requirements when procuring charging stations from a manufacturer. (see [\[EV-311\]](#) for details and link to document)

The requirements are based on the IEC 62443 standard for industrial cybersecurity. Requirements have been selected from this standard based on a threat analysis.

Supporting documents are available explaining how the ElaadNL and ENCS requirements compare to the requirements in the EN 18031 harmonized standard for the Radio Equipment Directive, and how the requirements can be implemented in OCPP. See [\[EV-312\]](#) and [\[EV-313\]](#) for details and link to document. The documents are informative and included in the basic set recommended for public charging stations by NKL, the Dutch national knowledge platform for charging infrastructure that works with policymakers, knowledge institutions, grid operators and market parties. Some cities and provinces include them in their tender requirements.

## 2.1.7. Cybersecurity Maturity Model Certification (CMMC)

The CMMC<sup>[4]</sup> was originally developed in January 2020 by the U.S. Department of Defense (DoD) to ensure that contractors and suppliers implement adequate cybersecurity protections for Controlled Unclassified Information (CUI) and Federal Contract Information (FCI). It provides a standardized framework for assessing and strengthening the cybersecurity of suppliers. The CMCC is relevant only if a federal agency buys EV charging stations directly or when used in defense-related contracts. However, given the cybersecurity prescriptions, it is still a certification noteworthy for OCPP users. In version 2.0 of CMMC, charging stations fit in the 'specialized assets' category in the CMCC (devices that can't be fully secured but still process/store data, including IoT/IIoT, OT). The CMMC follows a tiered model, which includes three maturity levels:

- Level 1: Basic cyber hygiene - aligns with 15 practices from FAR 52.204-21.
- Level 2: Advanced cyber hygiene - aligned with NIST SP 800-171 R2 (110 practices).
- Level 3: Expert level - 134 requirements (110 based on NIST SP 800-71 R2 + 24 based on NIST SP 800-172

---

(select requirements, more advanced).

Assessments are required as well to verify the implementation of the requirements.

## 2.1.8. The NIST Handbook 44

The NIST Handbook 44, published and maintained annually by the National Institute of Standards and Technology (NIST), sets technical requirements and tolerances for weighing and measuring devices, including electric vehicle (EV) charging stations. Similarly to the Measuring Instruments Directive (MID) in the European context, the NIST Handbook 44 [5] gives general requirements to measuring instruments used in the U.S.. Section 3.40 “Electric Vehicle Fueling Systems” (EVSE) was added to NIST Handbook 44 as a tentative code in 2015. Later, in July 2022, its status was changed from “tentative” to “permanent”, with the change becoming effective on January 1, 2023. This section establishes requirements for EV charging stations when the sale of electricity is based on metered kilowatt-hours. Handbook 44 is published annually by NIST but becomes legally binding through adoption by the National Conference on Weights and Measures (NCWM). Most U.S. states adopt Handbook 44 by reference into their weights and measures laws.

The Handbook 44 contains some requirements related to cybersecurity:

- *S.3.1. Metrological Components. – An EVSE measuring system shall be designed and constructed so that metrological components are adequately protected from environmental conditions likely to be detrimental to accuracy. The system shall be designed to prevent undetected access to adjustment mechanisms and terminal blocks by providing for application of a physical security seal or an audit trail.*
- *S.3.3. Provision for Sealing. – For devices and systems in which the configuration or calibration parameters can be changed by use of a removable digital storage device, security shall be provided for those parameters as specified in G-S.8.2. Devices and Systems Adjusted Using Removable Digital Storage Devices. For parameters adjusted using other means, the following applies. Adequate provision shall be made for an approved means of security (e.g., data change audit trail) or physically applying security seals in such a manner that no adjustment can be made of:*
  - (a) each individual measurement element;*
  - (b) any adjustable element for controlling voltage or current when such control tends to affect the accuracy of deliveries;*
  - (c) any adjustment mechanism that corrects or compensates for energy loss between the system and vehicle connection; and*
  - (d) any metrological parameter that detrimentally affects the metrological integrity of the EVSE or system. When applicable, the adjusting mechanism shall be readily accessible for purposes of affixing a security seal. Audit trails shall use the format set forth in Table S.3.3. Categories of Device and Methods of Sealing. (Amended 2019)*
- *S.4.1. Diversion of Measured Electricity. – No means shall be provided by which any measured electricity can be diverted from the measuring device. S.4.1.1. Unauthorized Disconnection. – Means shall be provided to automatically terminate the transaction in the event that there is an unauthorized break in the connection with the vehicle.*

## 2.1.9. California Consumer Privacy Act (CCPA)

The California Consumer Privacy Act (CCPA) was developed by the California Legislature and signed into law in 2018. The CCPA imposes cybersecurity-related duties on businesses that process California residents' personal data. For OCPP deployments, these duties primarily concern reasonable security practices, encryption of data, protection of sensitive personal information, and incident handling.

After California passed the CCPA in 2018, other states began drafting and enacting their own consumer privacy laws that reflect or build upon elements of the CCPA and go beyond breach notification statutes. For example, states like Virginia (VCDPA), Colorado (CPA), Connecticut (CDPA) and others have followed CCPA's lead in passing their own comprehensive privacy acts. The other acts, however, require controllers to implement appropriate technical and organizational measures to protect data, but liability for unencrypted breaches like in CCPA is unique.

## 2.1.10. Conclusion

In different regions of the world, various regulation is set, covering information security. Since OCPP is used globally, the Open Charge Alliance aims to distill the impact of all of these regulations and aims to adhere to all. Should you be aware of additional legislation, please contact the Open Charge Alliance at [info@openchargealliance.org](mailto:info@openchargealliance.org).

## 2.2. Regulations vs. security measures

The table below provides an overview of the regulations and the security requirements and recommendations described in this Operations Guide. For each of the security measures / recommendations from the second column it is indicated with whether this security measure is required for a regulation.

'x' - security measure is required for a regulation

'o' - security measure is required for a regulation and can be demonstrated (see [Demonstrating implementation of security requirements](#)).

The sections explain in detail what the measure entails and any specific details per regulation where applicable. A lot of security requirements that are needed for these regulations are an integral part of OCPP and covered by the OCPP Certification program.

| Classification                   | Security Measure                                                                   | CRA | RED directive |            |            | MID | NIS2 / NCCS* | ENCS | CMMC | NIST Hb 44 | CCPA |
|----------------------------------|------------------------------------------------------------------------------------|-----|---------------|------------|------------|-----|--------------|------|------|------------|------|
|                                  |                                                                                    |     | EN 18031-1    | EN 18031-2 | EN 18031-3 |     |              |      |      |            |      |
| OCPP specification               | Implement OCPP security requirements (from OCPP 2.x Core or OCPP 1.6 Core)         | o   | o             | o          | o          | o   | o            | o    | o    | o          | o    |
| OCPP specification               | Not allowing security profile 1 over unsecured networks (see <a href="#">4.2</a> ) | x   | x             | x          | x          | x   | x            | x    |      |            | x    |
| OCPP specification               | Secure firmware updates (see <a href="#">4.8</a> )                                 |     | x             | x          | x          |     |              | x    |      |            |      |
| Partly OCPP / Partly Beyond OCPP | Use unique credentials during manufacturing (see <a href="#">4.6</a> )             |     | x             | x          | x          |     |              | x    |      |            |      |
| Beyond OCPP                      | Secure storage mechanisms (see <a href="#">4.9</a> )                               |     | x             | x          | x          |     |              | x    | x    |            |      |
| Beyond OCPP                      | Local security log (see <a href="#">4.10</a> )                                     |     |               | x          | x          |     |              | x    |      |            |      |
| Beyond OCPP                      | Vulnerability handling (see <a href="#">4.11</a> )                                 | x   | x             | x          | x          |     |              | x    |      |            |      |
| Beyond OCPP                      | Hardening Charging Stations (see <a href="#">4.12</a> )                            |     | x             | x          | x          | x   |              | x    |      |            |      |
| Beyond OCPP                      | Risk Assessment (see <a href="#">4.1</a> and <a href="#">5.1</a> )                 | x   |               |            |            |     | x            | x    | x    |            |      |
| Beyond OCPP                      | Report cybersecurity incidents (see <a href="#">5.7</a> )                          |     |               |            |            |     | x            | x    | x    |            |      |

|                    |                                                                         |  |   |   |   |  |   |   |   |  |   |
|--------------------|-------------------------------------------------------------------------|--|---|---|---|--|---|---|---|--|---|
| Beyond OCPP        | Setting up a cybersecurity management system (see <a href="#">5.8</a> ) |  |   |   |   |  | o | x |   |  |   |
| Beyond OCPP        | Supply chain security controls (see <a href="#">5.10</a> )              |  |   |   |   |  | x | x | x |  |   |
| Beyond OCPP        | Access control for local maintenance (see <a href="#">4.13</a> )        |  | x | x | x |  |   | x |   |  |   |
| Beyond OCPP        | Security testing (see <a href="#">3.7</a> )                             |  | x | x | x |  |   | x | x |  |   |
| Beyond OCPP        | Network resilience (see <a href="#">4.14</a> )                          |  | x |   |   |  |   | x |   |  |   |
| Beyond OCPP        | Storing passwords (see <a href="#">4.4.1</a> )                          |  | x | x | x |  |   | x | x |  |   |
| OCPP specification | Preinstalled well-known root CA certificates (see <a href="#">4.7</a> ) |  |   |   |   |  |   | x |   |  |   |
| Beyond OCPP        | Backups and recovery (see <a href="#">4.15</a> )                        |  |   |   |   |  |   | x | x |  |   |
| OCPP specification | Use of FIPS-validated cryptography (see <a href="#">3.3.2</a> )         |  |   |   |   |  |   |   | x |  |   |
| Beyond OCPP        | Storing personal information (see <a href="#">4.4.2</a> )               |  |   | x |   |  |   | x |   |  | x |

- [NIS2](#) and [NCCS](#) have a large overlap and are therefore listed in the same column.

## 2.3. Demonstrating implementation of security requirements

The table from [2.2](#) can partially be demonstrated:

- Following the security requirements of OCPP can be demonstrated via the OCPP Certification Program (see [\[certification\]](#)).
- Setting up a cybersecurity management system can be verified by certifying a CSMS against ISO/IEC 27001.

For the other requirements that are discussed in this document, no standardized formal verification / certification is available yet.

## 2.4. Future versions

This chapter presents an overview of the regulations known at the time of publication. As new requirements emerge, future editions will update the regulatory overview and the security analysis accordingly. Given the continual evolution of security, subsequent editions will also broaden the scope of the next chapter to reflect - for example - newly discovered vulnerabilities.

# 3. Guidance for both Charging Stations and Charging Stations Management Systems

## 3.1. Introduction

In this chapter — and in Chapters [4](#) and [5](#) — security measures for Charging Stations ([4](#)) and Charging Station Management Systems ([5](#)) are described. The OCPP specification defines security in dedicated sections (for OCPP 2.x: Functional Blocks A, L, and M; for OCPP 1.6: the Security Whitepaper “Improved security for OCPP 1.6-J”). Items identified as part of OCPP (marked as “*About the OCPP specification*”) are mandatory for compliant implementations and are covered by the OCPP Certification Program. A way to check that these security requirements are met is to pass all relevant security test cases — either by obtaining formal certification or by running the same tests yourself with the OCPP Compliance Test Tool (OCTT). The latter has no official status (e.g. for regulators), but can help a vendor to adhere to the security requirements of OCPP.

For OCPP 1.6, the former separate Security certification has been integrated into the OCPP 1.6 Core certification as of October 2025. For OCPP 2.x, security requirements are a mandatory part of the Core; certification requires support for Security Profile 2 (TLS with Basic Authentication). For both OCPP 1.6 and 2.0.1, an Advanced Security certification profile is available for implementations that use client-side certificates for TLS (Security Profile 3).

## 3.2. Trustworthy Time

For many EV charging related functions, but also for basic security guarantees each charging station MUST have access to a trustworthy time source in a secure way. Since certificate validation, Time-based One-Time Password (TOTP) windows, log-signatures, OCSP stapling checks, and tariff/metrology evidence all depend on correct time, secure time synchronization SHALL be the first successful operation after boot before any outbound TLS control connections. This implies that the Heartbeat message cannot be used as a trustworthy source of time as it is not available before an outbound control connection is set up. It is RECOMMENDED to use NTS (see also [7.2.3](#)).

## 3.3. Cryptography

### 3.3.1. Curves for ECDSA certificates

*About the OCPP specification*

The security for OCPP uses X.509 certificates, at the time of writing, both RSA and ECDSA certificates are used. For security and interoperability it is important that the correct curves are used when using ECDSA certificates. For ECDSA (based on RFC 6605) the OCPP 1.6, 2.0.1 and 2.1 specifications require that keys used are at least 224 bits long and that the secp256r1 curve (a.k.a. prime256v1) is used. Other curves are not allowed, this is also validated during certification. Please note that the two RSA cipher suites currently allowed SHOULD be gradually phased out because they do not support perfect forward secrecy. See chapter [6](#) for more information on the TLS roadmap for the future.

### 3.3.2. Use of FIPS-validated cryptography

#### *About the OCPP specification*

OCPP mandates TLS v1.2+, bans weak ciphers and lists strong suites that are in line with the recommendations from different governmental agencies (ECDHE\_ECDSA / RSA with AES-GCM). In addition, endpoints must terminate on bad TLS versions/ciphers but OCPP does not require FIPS validated crypto modules. CMMC Levels 2 & 3 do mandate to use FIPS-validated cryptography (modules/algorithms) for protecting CUI.

### 3.3.3. Key updates

Keys and other credentials SHALL be regularly updated. For the CSMS certificate, OCPP recommends fast expiration. For other keys and credentials, the update frequency SHOULD be based on a risk assessment. It is RECOMMENDED to update them at least once per year.

## 3.4. Avoid use of unencrypted, unauthenticated FTP, HTTP for log file uploads and firmware downloads

#### *Upcoming OCPP specification updates (errata & additions)*

In OCPP log file uploads and firmware downloads are done via a connection separate from the OCPP WebSocket connection, via a file transfer. For this, the OCPP specification has a number of file transfer protocols that can be specified via the "FileTransferProtocols" variable. For a secure implementation - to prevent compromise through auxiliary file-transfer channels - a vendor SHALL send the firmware encrypted to the Charging Station. This can either be done by using a secure protocol (such as HTTPS, SFTP, or FTPS) to send the firmware, or by encrypting the firmware itself before sending it. In addition, the firmware must be signed to protect its integrity (see [4.8](#)). The FTP attack surface can be larger when a vendor supports unnecessary commands. It is RECOMMENDED to use **HTTPSS** for future-proofing and simplifying security. If FTP is used, the FTP commands MUST be limited and a secure transport channel SHALL be used.

When using SFTP (SSH) for file transfer or log retrieval, only public key-based authentication SHOULD be allowed. It is RECOMMENDED to completely disable password and challenge-response authentication methods to prevent brute-force or phishing-based credential attacks. The SSH login SHALL NOT give an interactive shell on the server, and SHALL only give file upload (and optionally download) functionality, to prevent remote code execution on the server once access to a Charging Station is gained.

In addition to standard key-based authentication, SSH provides a native certificate-based authentication mechanism, distinct from X.509 but conceptually similar. This mechanism supports fine-grained restrictions directly embedded in the SSH certificate, such as limiting valid principals, permitted commands, source addresses, and validity periods. For larger Charge Point Operators (CPOs) operating central logging, provisioning, or PKI infrastructure, adopting SSH certificates can significantly simplify key management, support short-lived credentials, and enforce granular operational policies.

To ensure integrity of the SSH connection itself, strict host key checking SHOULD be enabled on the client side. This enforces that the charging station only connects to servers with a known and trusted host key, effectively preventing man-in-the-middle attacks or malicious DNS redirections.

To avoid operational issues during the first connection (trust-on-first-use problem), the host key verification

---

SHOULD NOT rely on manual acceptance but instead SHOULD use one of the following trust anchors:

1. CA-Signed SSH Host Certificates – use an internal SSH Certificate Authority to sign host keys; clients verify the CA's public key rather than each individual host key.
2. DNS-Based Host Key Verification (SSHFP Records) – publish and validate SSHFP resource records via DNS<sup>[6]</sup>, enabling automated and authenticated retrieval of host key fingerprints.

## 3.5. Use of CommonName vs SAN

*Upcoming OCPP specification updates (errata & additions)*

OCPP 2.1 requires that the CSMS uses the Common Name (CN) field in its certificate to identify itself to the charging station. The charging station is required to check that the CN matches the CSMS's FQDN (requirements A00.FR.309 and A00.FR.412). The reason to use the CN was that only one host name was expected to be used per CSMS. The OCPP 2.1 identification policy is different from that which most browsers now use on the internet, which is for the client to only check the Subject Alternative Name (SAN). The browser's policy is stricter than specified in some standards. RFC 5280 and RFC 6125 require that the SAN is used when it is present but allows to fall back to the CN if it is not. Browsers will now however give an error when the SAN is missing from the certificate. The newer RFC 9525, which obsoletes RFC 6125, recommends against the use of the CN. In future OCPP versions, the charging station is required to check the SAN.

### 3.5.1. Advantages and disadvantages

Using the SAN would have the following advantages:

- Using the standard approach used on the internet will make it easier for developers to implement using standard TLS libraries.
- Checking the SAN would not create security risks, as long as the PKI is set up properly. The PKI should ensure that the link between the CSMS and subject alternate name is verified before it provides a certificate. This is already the normal way of working for PKIs used on the internet.
- Backwards compatibility can be provided by also putting the FQDN of the CSMS in the CN. Charging stations using an older CSMS version will check this CN and still be able to authenticate to the CSMS.

The only note of caution would be to not allow multiple host name in the SAN unless there is a clear use case for it. In principle, the CSMS could use multiple host names and put these in the SAN in a secure way. But allowing multiple host names could lead to less secure certificate management practices. For instance, CPOs could create only one certificate for multiple physical servers and then manually move the private key between them. Doing so would increase the risk that the private key gets compromised. Using multiple host names in the SAN could also create backwards compatibility problems. Charging stations that use OCPP 2.1 or older will check the CN, which only contains one host name. If the charging station is configured to connect to a host name that is in the SAN but not in the CN, it will refuse to connect. The reason for the connection problem may not be clear to the CPO.

Note: The use of wildcard certificates in the SAN has been analyzed in a separate whitepaper. The conclusion of the analysis and discussion was to not allow wildcard certificates.

### 3.5.2. Implementation options

There would be two options for implementing identification of the CSMS through the SAN in OCPP:

- Option A: the charging station only checks the SAN. When no SAN is present in the certificate, it refuses the connection. The CN is ignored.
- Option B: the charging station first checks the SAN. If no SAN is present, it checks the CN.

The chosen option is to follow option B in future version of OCPP.

Both options are compatible with the standards (RFC 5280, RFC 6125). Modern browsers follow option A. But commonly used TLS libraries however follow option B by default:

- OpenSSL allows to control the verification through flags. X509\_CHECK\_FLAG\_ALWAYS\_CHECK SUBJECT means that only the CN is checked. X509\_CHECK\_FLAG\_NEVER\_CHECK SUBJECT means than only the SAN is checked. Default behaviour for OpenSSL is to first check SAN and then CN as in option B.
- Mbedtls and wolfSSL also follow option B by default. The verification cannot be changed through flags. Users would have to write a custom verification callback function.

As one of the goals of the change is to allow easier implementation using TLS libraries, option B is chosen.

The other advantage of option B is that it provides backwards compatibility with OCPP 2.0.1 and 2.1. A charging station that uses the SAN authentication will still connect to a CSMS that only uses the CN in its certificate.

### 3.5.3. Identifying the OCPP service in the SAN

The SAN allows four types of identifiers for servers (see RFC 9525):

- DNS-ID: A subjectAltName entry of type DNSName.
- IP-ID: A subjectAltName entry of type IPAddress.
- SRV-ID: A subjectAltName entry of type otherName whose name form is SRVName.
- \*URI-ID: A subjectAltName entry of type uniformResourceIdentifier.

OCPP should specify which identifiers are allowed and not allowed (see the section *“Designing Application Protocols”* in RFC 9525).

OCPP implementations SHOULD use the DNS-ID as the default option (also for interoperability reasons). Using the DNS-ID is closest to the current OCPP specification using the Common Name and hence will be easiest to implement. RFC 9525 also recommends using the DNS-ID as a baseline for interoperability.

The other three identifiers could also be allowed if there is a clear use for them:

- URI-ID could be used to point to the exact URI of the OCPP service, not just to the whole CSMS server. So, it provides more precise identification.
- IP-ID could be used when charging stations use a fixed IP address to connect the CSMS. But special care should be taken to mitigate risks in this case. IP addresses can be spoofed. Many charging stations will be connected to private networks, and then the IP address does not really identify the server. The same IP

---

address would refer to different servers on different private networks.

- Using the SRV-ID would require adding SRV records to the DNS servers used for the CSMS. It could be added if OCPP users use SRV records. RFC 9525 recommends that application layer protocols such as OCPP specify that identifiers are not supported if they are not used.

## 3.6. Secure coding

*OCA recommendations beyond OCPP*

The charging station manufacturer SHALL ensure that their developers receive enough training on secure development. The same applies for CSMSs, regardless of whether it is developed in-house, purchased as a product, or provided as a service.

Developers SHALL be made aware of common vulnerabilities in the technologies used and learn how to prevent introducing these. When coding in a language that is not memory safe, such as C or C++, developers SHALL in particular learn how to avoid input validation vulnerabilities such as buffer overflows. Many real life vulnerabilities that are found, result from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length buffer. Tools are available to detect (potential) memory safety related issues in code, so it is RECOMMENDED to use these as part of the development process for languages that are not memory safe.

In all programming languages developers SHALL learn how to avoid vulnerabilities such as command injection, SQLi vulnerabilities, Server-Side Request Forgery (SSRF) and - if used on a charger - learn how to avoid common vulnerabilities in webportals (e.g. OWASP Top 10: <https://owasp.org/Top10/>, Cross Site Scripting (XSS), Cross-Site Request Forgery (CSRF)). In addition, input validation on files (e.g. firmware updates) is essential.

Backends SHALL apply strict schema validation for all incoming OCPP messages, rejecting malformed or unexpected payloads. All input fields SHALL be sanitized to prevent code injection and command execution. Dynamic evaluation of content within messages SHALL be disabled.

## 3.7. Security testing

*OCA recommendations beyond OCPP*

Manufacturers SHALL perform in-house security testing and reviews during development. The same applies for CSMSs, regardless of whether it is developed in-house, purchased as a product, or provided as a service.

It is recommended to use a combination of the following activities:

- Using static code analysis tools to find input validation errors
- Using software composition analysis tools to find vulnerabilities in libraries and other dependencies
- Performing fuzzing on OCPP and other EV specific protocols to find input validation errors
- Performing code reviews on security
- Performing web penetration tests on any web interfaces
- Organizing periodic penetration tests by independent parties

---

**CMMC** (for Level 3 only) has a requirement to conduct penetration testing at least annually or when significant security changes are made to the system, leveraging automated scanning tools and ad hoc tests using subject matter experts.

# 4. Guidance for Charging Station

This chapter contains guidance for OCPP Charging Station Management Systems to create a secure OCPP implementation. This chapter re-uses some concepts from Chapter 3, but applies them specifically to Charging Stations. Where concepts overlap, this chapter focuses on role-specific responsibilities.

## 4.1. Risk assessment

### *OCA recommendations beyond OCPP*

Manufacturers SHALL perform a risk assessment for their charging station to determine what security measures should be implemented. Guidance on risk assessments can for instance be found in ISO/IEC 27005 and IEC 62443-3-2.

The European Cyber Resilience Act ([CRA](#)), [ENCS security requirements](#) and [NIS2](#) require manufacturers to perform cybersecurity risk assessment and to take the results into account during the entire lifecycle of the product. The risk assessment SHALL take into account the intended purpose and reasonable foreseeable use of the charging station. It SHALL be used to determine whether the essential cybersecurity requirements relating to the properties of products (Annex I part I) apply to the charging station and how they should be implemented.

## 4.2. Use of Security Profiles

### *About the OCPP specification*

OCPP specifies 3 security profiles. Security Profile 1 - Unsecured Transport with Basic Authentication Profile - by itself is not secure. It does not include authentication for the CSMS, or measures to set up a secure communication channel. Therefore, a CPO SHALL NOT use this in untrusted networks. It was included in the OCPP specification to be used in networks where there is a VPN between the CSMS and the Charging Station, but this means that the entire security depends on this network configuration. In case that this is the only security measure, a misconfiguration (or stolen SIM card) will make the CSMS and possibly all charging stations in the network vulnerable. For this reason, for field operation it is highly recommended to use a security profile with TLS.

In addition, this recommendation is now linked to the legal obligations in the RED delegated act (EN\_18031-1/2/3). Note: The requirement applies to all network interfaces, defined as an *“external interface enabling the equipment to have or provide access to a network”*. Manufacturers should carefully check which interfaces on a charging station should be considered network interfaces.

CMMC Levels 2 & 3 require the protection of communications in transit from disclosure and modification. In OCPP, this is aligned only if Security profile 2 or 3 are used.

The California Consumer Privacy Act (CCPA) requires that businesses must implement *“reasonable security procedures and practices appropriate to the nature of the personal information”* to protect against unauthorized access, destruction, use, modification, or disclosure. Breaches of nonencrypted data expose businesses to liability. Although the description of the security measures is quite broad, this implies that Security Profile 2 or 3 MUST be used for this regulation.

Please also note that using OCPP 2.x without implementing security profile 2 (TLS with Basic Authentication) and optionally 3 (TLS with client side certificates) is NOT considered a valid OCPP 2.x implementation.

## 4.3. Security Profile downgrades

### *About the OCPP specification*

There is a number of requirements in the OCPP specification related to downgrading the security profile of a Charging Station, to a less secure profile, which is summarized below:

- It is - for security reasons - not recommended
- The Charging Station SHALL only allow to lower the security profile if the variable `AllowSecurityProfileDowngrade` is implemented and set to true. In that case, the Charging Station SHALL only allow to downgrade from profile 3 to profile 2.
- Thus a Charging Station SHALL NOT allow to downgrade from profile 2 or profile 3 to profile 1 using the OCPP protocol. Reason is that this might compromise the connection if no other transport security is used.
- When a Charging Station is updated to a higher security profile and is successfully connected to the CSMS using the higher security profile, the OCPP specification requires that a Charging Station removes all `NetworkConnectionProfiles` with a lower security profile. This is to make sure that a Charging Station will not revert to a lower security profile when it has connection issues. If a hacker can temporarily disrupt the connection, a Charging Station SHALL thus not fall back to a lower security profile. In addition a CSMS is required not to allow the Charging Station to connect with a lower security profile anymore.

Downgrading security profiles was introduced for use cases for migrating from one CSMS to another CSMS: a certified Charging Station firmware will - for example - not allow to downgrade to security profile 1. Therefore, the new CSMS MUST either support the same security profile that a Charging Station is using or - in case that the variable `AllowSecurityProfileDowngrade` is implemented and is / can be set to *true* - it MUST at least support security profile 2 (as required by OCPP certification).

## 4.4. Storing information

### 4.4.1. Storing passwords

#### *OCA recommendations beyond OCPP*

Charging Stations are devices in the field and therefore it must be taken into account that these can be tampered with. If a device is accessible, a hacker might have access to the storage of the Charging Station. Therefore an implementor MUST take care that sensitive information is stored securely. For example, storing passwords for the OCPP connection in plain text in the logging of a Charging Station can lead to hackers getting easy access to the password, that can be used to (attempt to) hack a CSMS.

Passwords that users use to log in on the charging station, such as passwords used by engineers for local access, SHALL be stored salted and hashed.

The HTTP Basic Authentication password used in Profile 2 can however not be stored hashed, as the charging station needs to use it. The main mitigating measure for this password is to use a unique password in each charging station, so that if a charging station is tampered with in the field only that charging station is affected. Whenever possible, the password SHOULD also be stored encrypted.

In addition, it is HIGHLY RECOMMENDED to regularly update passwords. Static manual passwords are a residual

---

risk. A CPO SHALL use randomized passwords of maximum length and shall regularly (e.g. once per month) change all passwords to avoid attacks by leaked passwords. To keep the increased workload as low as possible the CPO shall rely on fully automated processes.

[CMMC](#) levels 2 & 3 require storing and transmitting only cryptographically protected passwords. EN 18031 requires secure storage of security assets and of network assets, personal data, and financial assets. The standard is, however, not explicit on which secure storage mechanisms are appropriate.

## 4.4.2. Storing (and sending) personal information

*OCA recommendations beyond OCPP*

The California Consumer Privacy Act (CCPA) requires implementers to ensure that all personal identifiers (IdTokens, account/session data, charging logs) are encrypted at rest and in transit. For this reason, identifiers SHALL be pseudonymized / redacted in logs.

In addition, the CCPA says that consumers may limit use / disclosure of sensitive personal data. Therefore tokens, geolocation, payment references, and certificates SHALL only be transmitted via TLS-secured channels and never in plaintext. Sensitive attributes must be encrypted at rest and redacted from nonessential logs.

The RED directive EN 18031-2 requires that for storing "privacy assets" persistently (i.e. personal information) equipment MUST always use secure storage mechanisms

## 4.5. Wildcard certificates

*About the OCPP specification*

Supporting wildcard certificates is not OCPP-compliant, so these SHALL NOT be used as stated in the OCPP specification. This is also verified during OCPP certification. However, since this is not always implemented this way and it was not validated during certification until beginning of 2025, existing implementations in the field may at this moment depend on connecting to a CSMS using a wildcard certificate. To avoid newly certified systems breaking current non-compliant setups in the field, it was decided that vendors can opt to support disabling this check. To ensure that this (non-compliant!) "opt-out" is done in a standard way, an optional and not recommended configuration variable has been added to an OCPP erratum to disable the wildcard check for a Charging Station. This way vendors relying on this behavior can prevent immediate issues in the field with CSMSs that provide wildcard certificates. The variable - named `AllowCSMSTLSwildcards` - allows a Charging Station to support *non-OCPP compliant* behavior and connect to a CSMS that uses a wildcard certificate for the OCPP connection. If this variable is present in a Charging Station, it SHALL be `ReadWrite` so that a CSMS can enable the secure and OCPP compliant behaviour. If the variable is not implemented in a Charging Station, the default - OCPP compliant- behavior is that a Charging Station rejects a connection from a CSMS that presents a wildcard certificate.

## 4.6. Use unique credentials during manufacturing

*About the OCPP specification*

The charging station manufacturer SHALL initialize the charging station with unique credentials during manufacturing, so that the charging station is secure by default. Even when unique credentials are used, the

---

CPO SHOULD change the credentials after commissioning.

When HTTP basic authentication in combination with TLS is supported (Profile 2), the BasicAuthPassword configuration SHALL be initialized to a unique value. When client-side certificates are used for TLS, the charging station SHALL be provided with a unique private key and certificate. See also requirement A00.FR.801 in Part 2 of OCPP.

The credentials SHOULD be generated by a cryptographic random number generator, so that they cannot be guessed by attackers. (See also requirement A00.FR.801.)

The credentials SHOULD be installed in a secure area in the manufacturing plant, so that they cannot be leaked during installation. Access to the areas SHOULD be restricted to personnel that is needed for installing the keys and that has had a security screening. Physical security measures SHOULD be taken to prevent unauthorized access. (See also requirement A00.FR.801.)

When using HTTP basic authentication, the passwords SHOULD be transferred to the CPO or user in a secure way. Especially when passwords for a large number of charging stations are sent to the CPO, they SHOULD be sent encrypted.

When client-side certificates are used, the private key SHOULD be generated on the charging station and not leave the device as described in the applicable use cases in the OCPP Specification. A certificate SHOULD be created using a Certificate Signing Request, similar to how they are created during operations using the use cases A02 and A03. When the private key is (for commissioning / during manufacturing) generated outside the charging station, it SHOULD be kept confidential. It does not have to be shared with the CPO or end user.

#### *OCA recommendations beyond OCPP*

For creating the initial certificates for the charging station there are several options:

1. Create the certificate in a third-party PKI trusted by both the manufacturer and CPO.
2. Create a certificate in the PKI of the manufacturer. The CPO will then need to use a root or intermediate certificate of the manufacturer to authenticate the charging station. It would be recommended that the charging station first connects to a commissioning server on first installation, and that this server changes the certificate to one in the CPO's PKI before the charging station to a production CSMS.
3. Create a certificate in the PKI of the CPO. The CPO will then need to provide the manufacturer a way to create certificates from the public keys, for instance through certificate signing requests.

Please note that using unique credentials during manufacturing also applies to other connections besides OCPP - if used - such as SSH or a local webportal (using default passwords SHALL be avoided)<sup>[7]</sup>.

## 4.7. Preinstalled well-known root CA certificates

### *About the OCPP specification*

To be able to immediately use security communication profiles, root certificates for OCPP SHOULD be pre-installed on the charging station.

The OCPP specification recommends NOT to have preinstalled well-known root CA certificates on a Charging Station like in operating systems or browsers, like for example a CA bundle. The section in the OCPP specification about the Certificate Hierarchy describes that only root and intermediate certificates that are part of the

---

Charging Station Operator hierarchy should be used for the OCPP connection. Trusting many additional well-known root CA certificates (eg. via CA bundles) creates security risks and is therefore not advised in critical infrastructures. The largest risk would however come from nation state actors creating false certificates by compromising one of the CAs. CAs have been compromised in the past, and with a CA bundle a nation state has many CAs they can target. Moreover, compromising one CA would compromise all charging stations with the CA in their bundle. The attack would hence affect all chargers using a CA bundle.

For ISO 15118, the V2GRootCertificate and MORootCertificate MAY be installed using the OCPP Certificate Management use cases after the CPO has commissioned the charging station. The ISO 15118 certificates are not needed to set up secure communication to the CSMS and hence do not have to be preinstalled.

## 4.8. Secure firmware updates

### *About the OCPP specification*

The charging station SHALL check the authenticity of firmware before it is installed, preferably by checking a digital signature. It could do this by through the Secure Firmware Update process provided in OCPP (use case L01 in Part 2). If this process is not used, other measures to check the firmware authenticity SHALL be taken, for instance at operating system level.

### *OCA recommendations beyond OCPP*

To protect against local tampering with the firmware, the charging station SHOULD use a secure boot process when its hardware supports it. The secure boot process checks the authenticity of the firmware every time the charging station is booted. Secure boot is needed to conform to requirement [GEC-8] in EN 18031-3.

In addition the charging station SHALL not allow downgrading the firmware, that is installing firmware versions older than the installed firmware. Not allowing downgrades prevents attackers from installing firmware with a known vulnerability that was fixed in later firmware versions.

It is RECOMMENDED to encrypt a firmware file, to prevent exposing sensitive information that is part of the firmware (e.g. credentials).

## 4.9. Secure storage mechanisms

### *OCA recommendations beyond OCPP*

When a charging station is installed in an uncontrolled environment, it is vulnerable to physical attacks. In that case, measures SHALL be taken to protect the confidentiality and integrity of information stored on the charging station.

As a minimum measures, the casing of the charging station SHALL be protected against tampering. The casing SHOULD be hardened against physical tampering, doors SHOULD be locked, and there SHALL be a sensor to detect if they have been opened.

The charging station SHALL be configured by default to send any tamper detection events to the CSMS using the Security Event Notification use case (A04).

---

Additional measures for secure storage **SHOULD** be applied when feasible and based on a risk assessment.

These include:

- Storing cryptographic keys in tamper resistant chips, such as TPMs or secure elements.
- Encrypting the storage (drive encryption).
- Disabling unused hardware ports and debug ports on the circuit boards.

## 4.10. Local Security log

*OCA recommendations beyond OCPP*

OCPP requires that the charging stations stores events in a local security log (requirement A04.FR.04 in Part 2).

The log events **SHALL** include a timestamp.

The charging station **SHALL** take measures against failures in the security log. For instance when the log is full, the oldest entries could be discarded. A minimum number of the latest events **SHALL** be stored to allow investigations into incidents to be carried out effectively.

Logs **SHALL** also be protected against alteration. Secure storage measures **SHOULD** be used to protect against physical tampering (see Section [4.9](#)). On human user interfaces, such as local maintenance interfaces, access to the logs **SHOULD** be protected as much as possible.

To make the analysis of logs easier, the time on the charging station **SHALL** be synchronized. The time source integrity **SHALL** be protected. Please refer to [3.2](#) for time synchronization through OCPP heartbeat messages (vs. NTS). For other time synchronization methods, such as GPS, mobile networks, and radio transmitters, additional measures may be required.

## 4.11. Vulnerability handling

*OCA recommendations beyond OCPP*

Manufacturers **SHALL** set up a process to handle vulnerabilities found in the charging station or its dependencies.

To comply with the upcoming European Cyber Resilience Act ([CRA](#)) and the ENCS security requirements ([ENCS requirements](#)), the vulnerability handling process **SHALL** cover:

- Identifying vulnerabilities
- Creating a software bill of materials for the charging statoin
- Remediating vulnerabilities without delay including providings security updates
- Performing regular and effective security tests and reviews
- Publicly disclosing information about vulnerabilities once they have been fixed and informing users about them
- Putting in place a policy of coordinate vulnerability disclosure (and making it accessible, for example via [\[RFC9116\]](#))

---

- Facilitating information sharing about vulnerabilities, for instance by providing an address where vulnerabilities can be reported
- Securely distributing security updates
- Ensuring security updates are distributed without delay, accompanied with an advisory message, and unless otherwise agreed free of charge

More guidance on implementing vulnerability handling and disclosure can be found in the ISO/IEC 30111 and ISO/IEC 29147 standards.

To comply with the Radio Equipment delegate act (see [RED Directive](#)), they SHALL in particular not include any publicly known exploitable vulnerabilities that would affect network, privacy, financial or security assets at the moment the charging station is placed on the market.

## 4.12. Hardening charging stations

*OCA recommendations beyond OCPP*

The charging stations SHALL be hardened by disabling any unused functionality and by enabling available security features on the hardware and software platform. Charging Stations SHALL be delivered by the manufacturer in a hardened and secure configuration.

The following hardening measures are recommended:

- Disabling all unused network interfaces and other hardware ports on the outside of the charging station
- Disabling unused network services on each enabled network interface. Services that are only used on specific interfaces should *only* be accessible on those interfaces. This can be achieved by implementing a firewall that blocks open ports on specific interfaces where that service does not need to be accessible, or by configuring services to only listen on a specific network interface, and not all interfaces.
- Allowing users to disable any optional network services and hardware port
- Wireless communication such as WiFi and Bluetooth SHALL be disabled by default whenever possible. When wireless communication is needed, it SHALL be hardened and secured according to the best practices of the protocol used.
- Enabling security settings on the compiler according to best practices
- Enabling security features that are available on the platform, such as No-Execute (NX) / Write-xor-execute (W^R) and Address Space Layout Randomization (ASLR)
- Do not expose internal services on the charging cable's High Level Communication interface
- Do not run local Charging Station web interfaces or OCPP services with root access
- When Charging Stations can be locally configured, sensitive information must be protected behind a secure login screen.

The manufacturer SHALL provide documentation on how users can harden the charging station. The documentation SHALL include all hardware ports, network interfaces, and network services that are enabled in the factory default state.

## 4.13. Access control for local maintenance

### *OCA recommendations beyond OCPP*

Charging stations SHALL implement access control for engineers performing local maintenance.

Preferably, charging stations SHOULD use role-based access control. Each engineer logs in with an individual account with unique credential. In this way, user actions can be traced to individual users and a strong password policy can be enforced. The charging station checks the roles assigned to the engineer and assigns their access rights accordingly, so that the principle of least privilege can be implemented.

Most Role Based Access Control (RBAC) implementations however require that the charging station connects to a central access to get information about the engineers. So, RBAC on the charging station may not be feasible in every architecture. As an alternative part of the RBAC could be implemented on the laptop that the engineer uses for maintenance instead of on the charging station.

If local user accounts are used, it is still recommended to have separate accounts for separate roles and to enforce the use of strong passwords to protect against brute-force attacks.

## 4.14. Network resilience

### *OCA recommendations beyond OCPP*

If the charging station integrates a modem to connect to a wireless network, manufacturers SHALL ensure that the charging station is sufficiently resistant against denial-of-service (DoS) attacks. Firewall in the modem or charging station SHOULD be used to protect flooding and to ensure that DoS attacks do not affect the ongoing charging sessions.

A local controller that connects multiple charging stations to a CSMS may need to take additional measures to secure that communication. If the local controller is seen as a network device under EN 18031, it SHALL implement also traffic control and network monitoring to detect DoS attacks.

## 4.15. Backups and recovery

### *OCA recommendations beyond OCPP*

Manufacturers SHALL provide a mechanism to securely recover a charging station after a cybersecurity incident. Charging stations usually do not need to have a backup capability, as no important data is stored on them<sup>[8]</sup>. But it SHALL be possible to recover them from a stored or known good configuration.

If a factory reset function is provided, it SHOULD be prevented from abuse. Using the factory reset should only be possible for authorized users, for instance by requiring users to open the charging stations. Usually it should only be usable locally to prevent mass resets. Manufacturers should determine what the right policy is for the credentials on the charging station in a reset.

[CMMC](#) levels 2 & 3 require having an "*operational incident-handling capability for organizational systems that includes preparation, detection, analysis, containment, recovery, and user response activities.*"

# 5. Guidance for Charging Station Management System

This chapter re-uses some concepts from Chapter 3 and 4, but applies them specifically to Charging Station Management Systems. Where concepts overlap, this chapter focuses on role-specific responsibilities.

## 5.1. Risk assessment for CPOs

*OCA recommendations beyond OCPP*

Both the NIS2 directive and the NCCS require CPOs to perform cybersecurity risk assessment to determine appropriate measures.

For NIS2, the requirements for performing a risk assessment are determined by each member state.

The NCCS defined the requirements for performing a risk assessment are included in Article 26. In particular, entities SHALL report risks on a common risk-impact matrix developed by ENTSO-E and the DSO entity. The impact metrics of this matrix are defined to measure disruption to the electricity system. This means that CPOs will need to take impacts to the electricity system into account. CPOs only need to perform a risk assessment under the NCCS if they are identified as a high- or critical-impact entity.

The [CMMC](#) has a risk assessment section for Levels 2 & 3, that requires to periodically assess the risk to organizational operations (including mission, functions, image, or reputation), organizational assets, and individuals, resulting from the operation of organizational systems.

A risk assessment is the basis for CPO security measures. For example [CMMC](#) requires to scan for vulnerabilities in organizational systems and applications periodically and - when new vulnerabilities affecting those systems and applications are identified - to remediate vulnerabilities in accordance with risk assessments.

## 5.2. Use of Security Profiles

*About the OCPP specification*

OCPP specifies 3 security profiles. Security Profile 1 - Unsecured Transport with Basic Authentication Profile - by itself is not secure. It does not include authentication for the CSMS, or measures to set up a secure communication channel. Therefore, a CPO SHALL NOT use this in untrusted networks. It can be used in networks where there is a VPN between the CSMS and the Charging Station, but this means that the entire security depends on this network configuration. In case that this is the only security measure, a misconfiguration (or stolen SIM card) will make the CSMS and possibly all charging stations in the network vulnerable. For this reason, for field operation it is HIGHLY RECOMMENDED to use a security profile with TLS. Then TLS is used - for maintenance purposes - it is advised to use clear internal error messages, for example using the correct TLS error when no common cipher suite is found.

CMMC Levels 2 & 3 require the protection of communications in transit from disclosure and modification. In OCPP, this is aligned only if Security profile 2 or 3 are used.

The California Consumer Privacy Act (CCPA) requires that businesses must implement "*reasonable security procedures and practices appropriate to the nature of the personal information*" to protect against unauthorized access, destruction, use, modification, or disclosure. Breaches of nonencrypted data expose businesses to

---

liability. Although the description of the security measures is quite broad, this implies that Security Profile 2 or 3 MUST be used for this regulation.

Please also note that using OCPP 2.x without implementing security is NOT considered a valid OCPP 2.x implementation as per OCPP 2.x specification.

## 5.3. Security monitoring

### *OCA recommendations beyond OCPP*

The CPO SHALL set up security monitoring of the CSMS and connected charging stations. Logs SHOULD be gathered in a SIEM system for analysis. Use cases SHOULD be set up to detect repeated failed authentications, unexpected configuration changes, commands sent outside normal operating hours, or anomalous charging behavior at scale.

To detect DoS attacks a CSMS SHALL implement traffic control and network monitoring to its network. Example measures against DDoS attacks are traffic filtering tools, distributing data centers over different locations and adding additional layers of redundancy in DNS servers.

In addition, when using Security Profile 2 for the connection between Charging Station and CSMS, a malicious charger / hacker can perform a brute force attack to discover a combination of ChargingStationId and password. For this reason, the CSMS SHALL also monitor network traffic to take action against this type of attacks (example actions: withdrawing network level access for a malicious charger and send an engineer to repair it). By restricting network access to the CSMS to only the Charging Stations (so no public access) a CSMS can reduce this risk. Despite this, network monitoring is required, as Charging Stations are devices "in the field" and could be tampered with (see also [5.5](#)). When using Security Profile 2, OCPP requires a minimum password length of 16 characters, which - at the time of writing - is considered a strong password by for example CISA (the U.S. government Cybersecurity & Infrastructure Security Agency). A CSMS SHALL NOT accept unknown Charging Station IDs as part of the provisioning process, as this allows for an easy way overwhelm the CSMS with fake Charging Station Ids.

To prevent brute force attacks for authentication credentials, it is HIGHLY RECOMMENDED to use OCPP Security Profile 3, which makes use of client certificates instead of usernames and passwords.

When a connection is setup for a charger that already has an open websocket connection, there the CSMS has 2 options: it can only accept the new connection if it determines that it cannot send messages over the old connection anymore ("*stale connection*"). However, this can be difficult to implement in a resilient, scalable CSMS environment (websocket connections could be handled by different worker nodes / load balancer servers). Alternatively the CSMS can accept the connection at first and determine - e.g. in another module - that multiple / inconsistent connections exist for a charger. This inconsistency must then be remediated by closing superfluous connections. In addition, the CSMS can actively monitor for frequent reconnection loops, which may indicate a malicious device fighting with the authentic one over the connection.

## 5.4. Wildcard certificates

### *About the OCPP specification*

Using wildcard certificates by a CSMS is not OCPP-compliant, so these SHALL NOT be used as stated in the OCPP specification. This is also verified during certification and an implementation using wildcards is thus not certifiable.

However, since this is not always implemented this way and it was not validated during certification until beginning of 2025, existing implementations in the field may at this moment depend on connecting to a CSMS using a wildcard certificate. To avoid newly certified systems breaking current non-compliant setups in the field, it was decided that Charging Station vendors can opt to support disabling this check. To ensure that this (non-compliant!) "opt-out" is done in a standard way, an optional and not recommended configuration variable has been added to an OCPP erratum to disable the wildcard check for a Charging Station. This way vendors relying on this behavior can prevent immediate issues in the field with CSMSs that provide wildcard certificates. The variable - named `AllowCSMSTLSWildcards` - allows a Charging Station to support *non-OCPP compliant* behavior and connect to a CSMS that uses a wildcard certificate for the OCPP connection. If this variable is present in a Charging Station, it SHALL be `ReadWrite` so that a CSMS can enable the secure and OCPP compliant behaviour. If the variable is not implemented in a Charging Station, the default - OCPP compliant- behavior is that a Charging Station rejects a connection from a CSMS that presents a wildcard certificate. For this reason it is **HIGHLY RECOMMENDED NOT TO USE wildcard certificates**.

## 5.5. Tampering alarms

### *OCA recommendations beyond OCPP*

As described in [Secure storage mechanisms](#), the charging station SHALL be configured by default to send any tamper detection events to the CSMS using the Security Event Notification use case (A04). The CPO SHALL set up a process to respond to the alerts. If there is any indication of tampering, the CPO should send an engineer to the charging station to investigate.

## 5.6. Private key leakage process

### *About the OCPP specification*

CPOs SHOULD set up a process to revoke certificates in case the private keys used in OCPP are compromised. The OCPP standard includes a recommended strategy for certificate revocation in Section 1.5 of Part 2. It is recommended that the CSMS checks the revocation status for charging station certificates using the Online Certificate Status Protocol (OCSP).

For the CSMS certificate, it is recommended that fast expiration is used, so that the compromised certificate automatically expires. In this way, the charging station does not have to implement Certificate Revocation Lists or OCSP.

## 5.7. Report cybersecurity incidents

### *OCA recommendations beyond OCPP*

Both the NIS2 directive and the NCCS require CPOs to report cybersecurity incidents.

For NIS2, the thresholds for reporting are defined by each EU member state. For the NCCS, CPOs will also report cybersecurity incidents that may have a high impact on the electricity system. The exact reporting thresholds will be in a Cyber-Attack Classification Scale that is being developed by ENTSO-E and the DSO entity.

[CMMC](#) levels 2 & 3 require incident reporting, specifically to *track, document, and report incidents to designated officials and/or authorities both internal and external to the organization*. [ENCS](#) requires that the CPO must report security incidents in its EV charging system to the purchasing party. In this case the purchaser would for instance be a local government buying services for the management of their public charging stations.

## 5.8. Setting up a cybersecurity management system

### *OCA recommendations beyond OCPP*

CPOs that are classified as a high-impact entity under the NCCS SHALL set up a cybersecurity management system. Requirements for such a management system are included in Article 32 of the NCCS. The requirements are based on the ISO/IEC 27001 standards<sup>[9]</sup>. So, CPOs can comply by setting up a management system compliant to that standard.

If a CPO is classified as a critical-impact entity, it SHALL also provide verification evidence of the implementation of the management system. CPOs can do this by getting their management system certified against ISO/IEC 27001. If the competent authority in a member state supports it, they could also provide verification evidence through audits by the authority or through peer reviews by other critical-impact entities.

Whether an entity such as a CPO is high- or critical-impact is determined through so-called Electricity Cybersecurity Impact Indices (ECII). The ECII measures the possible impact on the European electricity system if the entity is compromised in a cyber-attack. ENTSO-E and the DSO entity have published a set of provisional ECII. For a CPO, the ECII is defined as the total charging capacity of all recharging points that it operates. The document also defines thresholds for when an entity would be considered high- or critical-impact for each EU member state. For instance, for countries in continental Europe, the critical-impact threshold is 3,000 MW. CPOs that are above these provisional thresholds should have been informed by their competent authority by 13 March 2025.

The real (non-provisional) ECII will be published after a Union-wide risk assessment has been performed.

## 5.9. Role-Based Access Control and logging

### *OCA recommendations beyond OCPP*

The CSMS SHALL use Role-Based Access Control (RBAC) for human users. The users shall use individual accounts to log in on the CSMS. The CSMS shall assign users access rights based on their role, as registered in a central access control server.

The CSMS should implement at least the following roles to allow implementing the principle of least privileges:

---

- **Customer service representatives** working for instance at the helpdesk of the CPO. They assist customers with simple problems with the charging stations and have limited access to the central system.
- **Engineers** that maintain the charging stations. They can make changes to the charging station configuration and update the firmware.
- **Server administrators** that maintain the CPO central system. They are responsible for both the server infrastructure, such as operating systems, virtualization platforms, databases, and CSMS applications.

The control system shall provide the capability to separate different types of system (non-human) users. The CSMS should implement at least the following roles for other system users:

- Mobility service providers
- Roaming platforms
- TSOs or DSOs (for smart charging)
- Charging stations

[CMMC](#) Levels 2 & 3 have the requirement to create and retain system audit logs and records to the extent needed to enable the monitoring, and to ensure that the actions of individual system users can be uniquely traced to those users.

## 5.10. Supply chain security controls

*OCA recommendations beyond OCPP*

The NIS2 directive requires entities to take supply chain security measures. The exact measures are determined on member state level. The NCCS requires all high-impact entities to implement certain minimum cybersecurity controls, and all critical-impact entities to implement advanced cybersecurity controls. These cybersecurity controls still need to be defined. They will be developed by ENTSO-E and the DSO entity based on a Union-wide risk assessment, and then need to be approved by the NCCS competent authorities.

The minimum and advanced cybersecurity controls will include controls on supply chain security. The controls are meant to ensure that the procurement process at CPOs takes security into account. In particular, they SHALL set security requirements and perform a verification of these requirements when procuring new components or systems. CPOs can use the ElaadNL and ENCS security requirements for this purpose when procuring new charging stations.

Level 3 of [CMMC](#) has two requirements for supply chain security:

- To assess, respond to, and monitor supply chain risks associated with organizational systems
- To develop a plan for managing supply chain risks associated with organizational systems and system components; update the plan at least annually, and upon receipt of relevant cyber threat information, or in response to a relevant cyber incident.

## 5.11. Secure firmware updates

### *Upcoming OCPP specification updates (errata & additions)*

Secure firmware updates are a required part of OCPP Certification. OCPP defines software updates from the CSMS. These will usually be automated, but this is not explicitly required in the specification whereas regulations do require this.

The CSMS SHALL ensure that firmware updates can only be performed by authorized users. Measures SHOULD be in place to ensure that the updates do not disrupt the operations of the charging stations, for instance by using gradual rollout process.

# 6. TLS versions and security policies

*Upcoming OCPP specification updates (errata & additions)*

OCPP uses Transport Layer Security (TLS) for secure communication. The TLS protocol is continuously updated through the release of new protocol versions and by adding and deprecating cipher suites. This impacts the OCPP protocol and this chapter explains how updates will be handled in the future for both Charging Stations and Charging Station Management Systems.

## 6.1. Expected updates to TLS

Based on government recommendations, updates in OCPP are expected related upgrading to TLS 1.3, deprecating the currently use RSA cipher suites, and implementing post-quantum algorithms.

### 6.1.1. TLS version 1.3

The use of TLS 1.3 is already allowed in OCPP 2.0.1 and 2.1. The requirements allow any TLS version newer than TLS 1.2. It is RECOMMENDED to always use TLS 1.3 if both the CSMS and the charging station support this. This is already standard behavior for most TLS implementations.

At a certain point in time it will no longer be allowed to use TLS 1.2. At the time of writing there is no urgent need for this. There are no official timelines for phasing out TLS 1.2 and it is still widely used. When properly configured as it is in OCPP, there are also no known vulnerabilities in TLS 1.2.

However, as standard development takes time and charging stations have a long lifetime, this chapter focuses on preparing implementations for phasing out TLS 1.2 in OCPP early. It is RECOMMENDED that any charging station developed after the release of this whitepaper is prepared for using TLS 1.3 to make it forward compatible when TLS 1.3 becomes the norm. This paragraph describes how to prepare and to maintain backwards compatibility.

### 6.1.2. Phasing out cipher suites without perfect forward secrecy

The two RSA cipher suites currently allowed SHOULD be gradually phased out because they do not support perfect forward secrecy.

OCPP 2.0.1 and 2.1 support both elliptic curve and RSA cipher suites. The RSA cipher suites are:

- TLS\_RSA\_WITH\_AES\_128\_GCM\_SHA256
- TLS\_RSA\_WITH\_AES\_256\_GCM\_SHA384

The suites use RSA for key transport, rather than using Diffie-Hellman for key exchange. They hence do not have perfect forward secrecy. If an attack first records a TLS session, and then manages to get the private keys, they could decrypt the session. The risk of such an attack is limited for OCPP.

However, it is generally recommended to phase out cipher suites that do not support perfect forward secrecy, as there are suites that support it easily available. For OCPP, the suites above could for instance be replaced by:

- TLS\_ECDHE\_RSA\_WITH\_AES\_128\_GCM\_SHA256

---

- TLS\_ECDHE\_RSA\_WITH\_AES\_256\_GCM\_SHA384

As the update in cipher suites is not urgent, it could be combined with the migration to TLS 1.3. TLS 1.3 requires the use of algorithms with perfect forward secrecy.

The elliptic curve cipher suites in OCPP 2.0.1 and 2.1 do support perfect forward secrecy. They are still recommended for long term use and there is no need to phase them out. For this reason it is RECOMMENDED to use the elliptic curve suites over the RSA suites in the short term if possible.

### 6.1.3. Post quantum cryptography

OCPP should be prepared for attack using quantum computers by implementing post-quantum cryptographic algorithms. Post-quantum algorithms are being standardized and are available in TLS.

Most governments present timelines for moving to post-quantum cryptography between 2030 and 2035. Charging stations do not have to be early adopters of post-quantum cryptography. They are not that vulnerable to "harvest now, decrypt later" attacks, where an attacker captures traffic now and then decrypts it when quantum computers become available. Hence, OCPP can wait with migrating to post quantum algorithms until around 2035. Some countries may however put in place regulations that require CPOs to move to post quantum cryptography sooner, especially if they are considered a critical infrastructure.

As charging stations are in the field for a long time, it is useful to start preparing OCPP and define a post-quantum cryptography option in the coming years.

An important consideration is also that the keys used for post-quantum algorithms are typically much larger. Charging stations that are installed now should at least have enough memory to support them.

## 6.2. Managing backwards compatibility

Implementing the updates discussed above can be challenging. Charging stations and CSMSSs should be able to use the latest versions and features but should also be backwards compatible to allow connections with older equipment. It should however not be possible for attackers to exploit the backwards compatibility to downgrade to vulnerable TLS versions.

As a solution to meeting these conflicting objectives, the allowed TLS versions and cipher suites are bundled in *security policies*. The existing network connection profiles then provide a mechanism to control the *security profile*. The security *settings* - all settings related to TLS - that a charging station accepts can be managed by setting the [SecurityPolicy](#) via the device model.

The approach has two advantages:

- CPOs can enforce their own cryptographic policies on the charging stations, for instance to comply with national regulations on cryptography. By selecting a secure (or even custom) policy and avoiding unsecure security policies, as described below, the CPO can ensure that a charging station does not accept cryptographic algorithms that are not allowed by its policies. But if it is needed, they can allow older TLS version by configuring a different security policy on the charging station. The CPO hence can determine themselves their "risk appetite" for older TLS versions or cipher suites.

---

- The OCPP standard can define a long-term roadmap for upgrading TLS by uncoupling the relation between the TLS settings and the OCPP version. Policies for TLS 1.3 or with new cipher suites can already be defined for the current protocol versions (and explained / added via a whitepaper). The same versions can then be kept for future OCPP versions. For backwards compatibility reason, OCA defines a policy that captures the OCPP 2.0.1 / 2.1 security requirements that can be selected. In the future OCA can then gradually deprecate older security policies when they become vulnerable, first by recommending against their use, and then by deprecating and removing the policies in later versions.

## 6.2.1. Security profiles vs. security policies

The basic idea is that each security profile in OCPP only describes the *mechanism / method* of security: basic authentication, TLS with basic authentication and TLS with client side certificates. The TLS *settings* that are allowed, in particular the allowed TLS versions and cipher suites are captured in security *policies* that can be referred to with a unique name.

Current versions of the OCPP specification captures these 2 types of information in security profiles which therefore need to be updated in a future version of OCPP. See for instance requirements A00.FR.313, A00.FR.318, A00.FR.319, and A00.FR.320 for the TLS with basic authentication profile for requirements that would then not be specified anymore by these requirements, but separately in security policies.

Policies would be given a name of the form “OCPP-TLS<description>-<year>”, for instance OCPP-TLS12-2020 or OCPP-TLS13-2025. Policies do not have to be ordered, as it is not always possible to say that one policy is strictly more secure than another.

## 6.2.2. Process for connecting

A charging station can then enforce the TLS settings by checking against the security policy in the device model when it connects to a CSMS. The charging station first sets up a TLS connection to the CSMS. The TLS version and cipher suites are negotiated during the TLS handshake. The charging station can then either adapt its options during TLS negotiation based on its active security policy or check if the negotiated settings are allowed by the security policy and if they are not close the connection (less error prone).

If a connection is not allowed and a fallback and / or other network connection profile are present on the charging station, the charging station will try these next.

## 6.2.3. Process for changing policies

The CSMS can update a TLS policy by changing the relevant variable in the device model. Immediately after the change, the Charging Station will try to reconnect with the new policy. If the charging station fails to connect with the new policy, it will fall back to the old policy and send `SecurityEventNotification SecurityPolicyUpdateFailed`. Once successfully connected with the newly set policy the Charging Station will send a `SecurityEventNotification SecurityPolicyUpdated` and cannot fall back to the previous security policy. This can only be initiated by changing the security policy by the CSMS again.

On its side, the CSMS also checks the TLS settings against the security policies it has configured in the charging station. In most cases, the CSMS will support one security profile – security policy combination on a specific network address and port. The security profile and policy used would be an internal configuration of the CSMS.

---

To secure changing the security policy of a Charging Station, an additional security mechanism is needed to make sure that restoring a (less secure) security policy is not easily done. This topic is separately covered in chapter [8](#).

## 6.3. OCPP additions to the Device Model

The proposed implementation of security policies is by adding 2 Device Model variables detailed in [Appendix B](#). Reason for choosing these 2 variables instead of making it part of a NetworkConnectionProfile is that this makes it possible to apply this approach – for example based on a description in a whitepaper – to OCPP 2.0.1 and OCPP 2.1 without having to change the JSON schemas. The approach consists of an additional variable of type OptionList that contains a value from the list of supported security policies. The (actual) value can then be set to the policy that must be used.

To change security policy, the variable [SecurityPolicy](#) can be set to a new Security Policy that is to be used the next time the Charging Station reconnects to a CSMS. The variableInstance can be used to indicate the scope of the security policy: if the Charging Station does not have the variableInstance defined, the security policy applies to all security connections, otherwise a variableInstance is needed to specify the scope: *CSMSWebSocketConnection*, *FirmwareDownload* or *LogFileUpload*.

Besides the SecurityPolicies defined by OCA, implementors can add custom security policies (and variableInstances) depending on their own needs, for example when regulatory requirements ask for security policies that differ from the predefined policies. SecurityPolicies defined by OCA will start with "OCPP-". Custom SecurityPolicies defined by a vendor SHALL start with a value that uniquely identifies the policy. It MUST be formed from the reversed DNS namespace, where the top tiers of the name, when reversed, should correspond to the publicly registered primary DNS name of the Vendor organization. For example: "com.mycompany-POLICY123".

This is the same naming rule as used for the vendorId in DataTransfer or CustomData customizations.

As the CSMS websocket connection is in use, a second variable - [ActiveCSMSSecurityPolicy](#) – is included to indicate the security policy the station uses at that moment to connect to the CSMS. When updating the security policy, it will temporarily have a different value than the

[\[active\\_security\\_policy.ActiveCSMSSecurityPolicy\]](#).

# 7. Securing other services

*OCA recommendations beyond OCPP*

Besides OCPP, charging stations also use many other network protocols. They may use NTP for time synchronization, DNS for translating domain names to IP addresses, and FTP for file transfers. For the charging station to be secure, all these network services **MUST** be secured. The following paragraphs provide an overview what a vendor can do to secure these other services.

## 7.1. General security requirements

To ensure a secure OCPP implementation, other network services **MUST** be secured, as indicated by legislation such as the Radio Equipment Directive delegated act, and on the ElaadNL / ENCS requirements. The services **SHOULD** use encryption, message authentication, and protection against replay attacks.

For many services, these properties can be provided by using TLS. In that case, the protocols can follow the OCPP requirements on the TLS configuration and cipher suites.

Other services may however use protocol-specific security measures. The OCPP security guidelines cannot cover all possible protocols. So, it should recommend following the best practices available for each protocol.

## 7.2. Protocol configuration

When protocols use TLS, they **SHALL** follow the security policy configured for TLS in OCPP (see [6](#)). Most other settings will however be protocol specific. OCPP can probably only support configuring the most used protocols. Recommendations for some are given below.

### 7.2.1. FTP configuration

One commonly used protocol is FTP, which the charging station uses to download firmware files or upload logs. It would be recommended to use FTPS to secure the FTP connection, as in that case TLS can be used. Using SFTP would also provide a secure connection but would use SSH keys which would have to be managed separately. If the FTP server is integrated with the CSMS servers, it can use the CSMS authentication mechanisms. The FTP server could use a certificate in the Charging Station Operator hierarchy, so that the charging station can validate it using the CSMS root certificate. The charging station can use either client-side certificates (profile 3) or the basic authentication password (profile 2). If the basic authentication password is used, the FTP server needs to be trusted by the CSMS, as it would have access to the passwords. If it is not trusted, a separate FTP password needs to be configured. It is RECOMMENDED to use HTTPS instead of FTPS whenever possible, as HTTPS exposes a smaller attack surface.

### 7.2.2. HTTP

Charging Stations also use HTTP for other purposes than for the OCPP connection. They may, for instance, use it instead of FTP to download firmware or upload log files. Charging Stations **MUST** always use HTTPS instead of plain HTTP for security. The OCPP TLS policies should be followed for the TLS settings (see [6](#)).

Certificate management depends on the use case. If the HTTP connections are to servers in the CSMS, the server certificates can be in the Charging Station Operator hierarchy that is used in OCPP for the CSMS. But for other

---

use cases a separate certificate hierarchy could be needed. See the comments on certificate management below.

### 7.2.3. NTS

For secure time synchronization it is RECOMMENDED to use TLS. As NTS uses TLS for security, it can also follow the OCPP TLS policies (see [6](#)). For managing the CA certificates, the certificate management use cases described below can be used. For the configuration, the charging station only needs the server address and a variable to turn on NTS.

### 7.2.4. DNS

In many cases, charging stations use DNS to resolve the connect to the CSMS. DNS is vulnerable to various attacks, such as spoofing and cache poisoning. So, it is recommended to use DNSSEC whenever possible. The use of TLS does provide an authentication mechanism of the CSMS separate from DNS that mitigates some of the risks if properly implemented. If an attacker manages to point a Charging Station to the wrong IP address through DNS attacks, the Charging Station can detect that the host is not the CSMS by checking the certificate. Such attacks can however cause a denial-of-service.

### 7.2.5. SSH

Some charging stations use SSH for remote access. The SSH protocol in itself is secure, provided that the host key is trusted, see [3.4](#). However, it does pose a security risk because of the unrestricted access that it gives users, especially if they can have root privileges. With such privileges, users may for instance change executables and scripts, bypassing measures to protect firmware integrity. So, SSH access MUST be used with caution.

It is probably easier to manage the SSH settings through SSH itself rather than through OCPP. Through SSH, users already have good options to manage user accounts and credentials. Adding such functions in OCPP is more complex.

It also could create additional risks as OCPP does not have separation of roles, which is available in SSH. To manage SSH setting, the CSMS would have to be given rights that are equivalent to root access. They may for instance create new SSH accounts and change their credentials. Attackers could abuse such functions to give themselves root access.

## 7.3. Certificate management

Protocols that use certificates could use the existing OCPP certificate management use cases for their own certificates.

OCPP already includes several certificate management use cases:

- Updating CA certificates (M05)
- Updating the certificate of the charging station:
  - Using a Certificate Signing Request on request of the CSMS (A02)
  - Using a Certificate Signing Request on request of the charging station (A03)

- Deleting certificates (M04)
- Retrieving a list of available certificates (M03)

These use cases should be enough to support certificate management for most protocols. Certificates for different uses are now identified through the `InstallCertificateUse` enum type. This enum could be extended to cover other commonly used services, such as NTS and FTPS. If using an enum is too restrictive, a string identifier could be used in a future version of OCPP.

## 7.4. Using DANE

An alternative to setting up certificate management in OCPP, would be to use DNS-based Authentication of Named Entities (DANE). It is NOT RECOMMENDED to use DANE.

When using DANE, the charging station uses DNS to check if a certificate is valid, rather than using a CA certificate and certificate chain. The advantage of this approach is that no management is required for root certificates. As OCPP already has use cases to manage root certificate, this advantage however is limited. The disadvantage would be that the CPO would have to use DNSSEC, as the security of services now relies on DNS. Additionally, DANE does not seem to be widely used, so it is not clear if it can be easily implemented by charging station manufacturers.

For the above reason, it is NOT RECOMMENDED to use DANE.

## 7.5. Security events for certificate management

Security events exist for any changes to certificates or keys. These events are now part of the `ReconfigurationOfSecurityParameters` event. It would be better to use separate events for changes to CA certificates and to private keys.

| Security event                       | Description                                                                                                                                                                                                                                         | Critical |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CA certificate installed             | A new CA certificate has been installed on the charging station (e.g. through use case M05). The tech info field of the security event notification request should contain the certificate use (as in the <code>InstallCertificateEnumtype</code> ) | Yes      |
| Charging station certificate updated | A certificate and private key used for the identification of the charging station has been updated (e.g. through use cases A02 or A03).                                                                                                             | Yes      |

The charging station certificate update event could be used for any certificate used to identify the charging station, also if the certificate is used for other protocols. In that case, the tech info field should also contain the certificate use. German law requires a log entry in a metrological log if the certificate for NTS is changed.

# 8. Restricting access to critical operations

*Upcoming OCPP specification updates (errata & additions)*

OCPP currently does not provide a method to restrict access to privileged functions on a charging station. After authentication, the CSMS has access to all functions on the charging station. There is no separation of roles that would allow to implement the principle of least privileges.

There are however some privileged functions where it would be useful to restrict access, such as:

- Updating CA certificates
- Performing firmware updates
- Performing financial transactions
- Switching power at many charging stations at the same time

The lack of role separation is made worse by the use of authorized man-in-the-middle (MitM) solutions used by some CPOs. Some CPOs for instance, route traffic to the CSMS through the servers of a third party to make use of their services. Other CPOs may use a local controller or an EMS as man-in-the-middle. The problem is that any system that is put in the middle will have the same access rights as the CSMS. So, it also has full access to all the privileged functions, which is usually not desirable.

In this chapter, we explore possible solutions to restrict access to these functions.

## 8.1. Possible solutions

The table below summarizes the possible solutions for restricting access to privileged functions with their advantages and disadvantages.

| Solution                                   | Advantages                                                                                                                                                                         | Disadvantages                                                                                                                                                                                                                   |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RBAC in the CSMS GUI                       | <ul style="list-style-type: none"><li>- Easy to implement</li><li>- Protects against insider threats</li><li>- Protects against attacks through compromised GUI accounts</li></ul> | <ul style="list-style-type: none"><li>- Does not protect in MitM scenario</li><li>- No protection if attackers fully control the CSMS</li></ul>                                                                                 |
| Logging access to privileged functions     | <ul style="list-style-type: none"><li>- Allows to analyze security incidents</li></ul>                                                                                             | <ul style="list-style-type: none"><li>- Does not protect in MitM scenario</li><li>- Attackers that control CSMS can suppress event collection</li></ul>                                                                         |
| Changes through firmware updates           | <ul style="list-style-type: none"><li>- Would protect against attackers that fully control the CSMS</li></ul>                                                                      | <ul style="list-style-type: none"><li>- CPO can only make changes with the help of the charging station manufacturer</li></ul>                                                                                                  |
| Signing messages with the CSMS private key | <ul style="list-style-type: none"><li>- No new keys need to be introduced</li></ul>                                                                                                | <ul style="list-style-type: none"><li>- Relatively complex to implement</li><li>- Does not protect in MitM scenario</li><li>- No protection if attackers fully control the CSMS, as they can use the CSMS private key</li></ul> |
| Signing messages with other keys           | <ul style="list-style-type: none"><li>- Protects against attackers with full control of the CSMS</li></ul>                                                                         | <ul style="list-style-type: none"><li>- Very complex to implement</li></ul>                                                                                                                                                     |

## 8.1.1. RBAC in the CSMS GUI

While roles cannot be separated in the OCPP protocol, they can be separated in the graphical user interface (GUI) of the CSMS. Preferably, a role-based access control (RBAC) model is used with centrally managed, individual user accounts and privileges assigned to roles. Privileged actions should be limited to specialized administrator accounts that are only used by a small number of trusted personnel. Access to these roles should be protected through two-factor authentication. For very critical actions, the four eyes principle should be enforced. See also [5.9](#)

With modern development frameworks, the RBAC should be relatively easy to implement. Having RBAC in the GUI will provide good protection against insider threats or compromised accounts.

But the solution will not protect in MitM scenarios where someone has compromised a system put in the middle between the CSMS and charging station. It will also not protect against attackers that manage to gain full control over the CSMS, as these can simply bypass the GUI.

## 8.1.2. Logging access to privileged functions

The charging station should log all access to privileged functions. Access to security related privileged functions, such as updates of CA certificates or firmware updates, can be logged in the security log and pushed to the CSMS using security event notifications (use case A04). If privileged functions are not security related, they should be logged in other logs. The CPO should set up monitoring to analyze and respond to the logged events.

Logging privileged functions will allow CPOs to better analyze security incidents. But the OCPP security logging mechanism provides no protection in MitM scenarios or against attackers who have compromised the CSMS. All logs are sent through the CSMS. So, attackers could simply suppress the events.

If CPOs want to protect in these cases, they could consider gathering the security logs through a different channel. The charging system could for instance send the log directly to a SIEM system using syslog.

## 8.1.3. Changes through firmware updates

Critical changes to the charging station can be included in the firmware updates. The firmware updates can be protected using the digital signature of the charging station manufacturer. So, even in a MiTM scenario or when the CSMS is completely compromised, attackers cannot just send any firmware they want to the charging station. At worst, they can downgrade firmware to an older version.

The downside of making changes to the firmware is that these can only be made with the help of the charging station manufacturer. Usually, the CPO should not be dependent on the manufacturer to change the configuration of their charging station, as the manufacturer may not support the charging station through its entire lifecycle.

## 8.1.4. Signing messages with the CSMS private key

Privileged actions could also be protected by using signed messages, as defined in Section 7 of OCPP 2.1 Part 4 - JSON over WebSockets implementation guide. The easiest way to do this would be to sign the messages using the CSMS private key that is also used for the TLS connection, as in that case no new keys need to be introduced.

Even then, this approach does add complexity. It should be defined which actions are privileged and may only be

---

accessed using signed messages. Possibly, there would be a need to turn the protection through signing on and off. Error handling needs to be defined in case the signature is not correct. And if the CSMS uses an HSM to protect the keys, it could take some integration work to have the HSM sign the OCPP messages.

Additionally, this solution does not really protect in MitM scenarios or against attackers who have compromised the CSMS. In the MitM case, the system that is in the middle needs access to the CSMS private keys to function. So, if it is compromised, the system can also create signed messages. If the CSMS is compromised, we should assume that the attackers also have the CSMS private key. Even if the private key is an Hardware Security Module (HSM) and they cannot extract it, they can still use it to create signed messages and access the privileged functions.

### 8.1.5. Signing messages with other keys

To solve the problem with attackers gaining access to the CSMS private key, messages could be signed with other keys. A separate key could be introduced for specific privileged access such as key management or firmware update. The private key could be kept outside the CSMS. So, even when attackers have compromised the CSMS, they cannot access the key to perform the privileged actions. Using a separate key would provide protection even in MitM scenarios or against attackers who have fully compromised the CSMS. But it would be a very complex solution. Besides the complexities when using the CSMS key discussed above, a new key hierarchy needs to be set up both at the CSMS and the charging station. The OCPP specification needs to define which key is used for which operation. CPOs need to store the keys in systems outside of the CSMS. But these outside systems still need to sign the OCPP messages.

## 8.2. Recommended solutions

Looking at the advantages and disadvantages, the following two solutions are RECOMMENDED:

- The use of RBAC in the CSMS GUI. Both the technical implementation in the CSMS, and the account management processes at the CPO needed to use RBAC effectively. See also [5.9](#)
- Logging all access to privileged functions in the security logs or other logs. In addition, monitoring MUST be used for critical functions. Please refer to OCPP 2.x specification Part 2 Appendices document for the available Security Events, such as `InvalidCsmsCertificate` and `TamperDetectionActivated` (see also [\[tampering alarms\]](#)). Besides setting up monitoring, the CPO MUST also respond to the logged events.

These above solutions are relatively easy to implement, and they provide good protection against most threats. However, the solutions do not provide protection in MitM scenarios or when attackers have fully compromised the CSMS. For these cases, the only real solution would be signing messages with other keys. Whether it is worth adding this measure to OCPP would mostly depend on how common the use of MitM solutions is. The threat of attackers fully taking over the CSMS can probably be mitigated more effectively by measures that protect the CSMS. But the risk caused by the use of MitM solutions would have to be addressed in the OCPP protocol itself.

#### *Updating the root certificate*

A special case of privileged functions is updates to CA certificates. OCPP allows the CSMS to install (M05) and delete (M04) CA certificates. Additional protection was included in OCPP 2.x in the form of an additional root certificate check. if the `AdditionalRootCertificateCheck` variable is set, the new root certificate must be

---

signed using the old root certificate. So, the CSMS can only perform the update with authorization of the CA. An attacker would have to compromise both the CSMS and the CA to change the root CA.

The mechanism included in the additional root certificate check still seems a valid solution for this specific case. Cross-signing the new CA certificate with the old certificate is common practice for public CAs. It is also a commonly used measure in key management protocols such as SCEP or EST. So, it can be used to protect CA certificate updates in OCPP.

There are some availability risks in using the old CA certificate to cross sign the new CA certificate. If the private key of the old CA certificate would somehow be lost, it would not be possible to install a new CA certificate. Hence, it is critical to make a secure backup of this private key.

## 9. Referenced documents

| Ref.     | Document                                                                                                                                                                                                                                                                                | Version       | Date       | Link                                                                                                                                                                                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [CCPA]   | California Consumer Privacy Act (CCPA)                                                                                                                                                                                                                                                  | March 13 2024 | 2024-03-13 | <a href="https://oag.ca.gov/privacy/ccpa">https://oag.ca.gov/privacy/ccpa</a>                                                                                                                                                   |
| [CMMC]   | Cybersecurity Maturity Model Certification (CMMC)                                                                                                                                                                                                                                       | -             | -          | <a href="https://dodcio.defense.gov/CMMC/">https://dodcio.defense.gov/CMMC/</a>                                                                                                                                                 |
| [CRA]    | Regulation (EU) 2024/2847 of the European Parliament and of the Council of 23 October 2024 on horizontal cybersecurity requirements for products with digital elements and amending Regulations (EU) No 168/2013 and (EU) 2019/1020 and Directive (EU) 2020/1828 (Cyber Resilience Act) | 2024-11-20    | 2024-11-20 | <a href="https://eur-lex.europa.eu/eli/reg/2024/2847/oj/en">https://eur-lex.europa.eu/eli/reg/2024/2847/oj/en</a>                                                                                                               |
| [DCPM]   | Decreto del presidente del consiglio dei ministri 14 aprile 2021, n.81. Allegato B                                                                                                                                                                                                      | -             | 2021-04-14 | <a href="https://www.gazzettaufficiale.it/eli/id/2021/06/11/21G00089/SG">https://www.gazzettaufficiale.it/eli/id/2021/06/11/21G00089/SG</a>                                                                                     |
| [EV-211] | Security requirements from IEC 62443 for EV charging infrastructure                                                                                                                                                                                                                     | 2025v1.0      | 2025-02-25 | <a href="https://enCs.eu/resource/ev-211-security-requirements-from-iec-62443-for-ev-charging-infrastructure/">https://enCs.eu/resource/ev-211-security-requirements-from-iec-62443-for-ev-charging-infrastructure/</a>         |
| [EV-311] | Security requirements from IEC 62443 for procuring EV charging stations                                                                                                                                                                                                                 | 2025v1.0      | 2025-02-25 | <a href="https://enCs.eu/resource/ev-311-security-requirements-from-iec-62443-for-procuring-ev-charging-stations/">https://enCs.eu/resource/ev-311-security-requirements-from-iec-62443-for-procuring-ev-charging-stations/</a> |
| [EV-312] | EV-312: Implementing IEC 62443-4-2 requirements in OCPP 2.0.1 2025v1.0                                                                                                                                                                                                                  | 2025v1.0      | 2025-02-25 | <a href="https://enCs.eu/resource/ev-312-implementing-iec-62443-4-2-requirements-in-ocpp-2-0-1/">https://enCs.eu/resource/ev-312-implementing-iec-62443-4-2-requirements-in-ocpp-2-0-1/</a>                                     |
| [EV-313] | EV-313: Coverage of EN 18031 requirements by the IEC 62443 requirements for EV charging stations for a detailed analysis                                                                                                                                                                | 1.0           | 2025-04-09 | <a href="https://enCs.eu/resource/ev-313-coverage-of-en-18031-requiremetns-by-ev-311/">https://enCs.eu/resource/ev-313-coverage-of-en-18031-requiremetns-by-ev-311/</a>                                                         |

| Ref.         | Document                                                                                                                                                                                                                                                                          | Version   | Date       | Link                                                                                                                                                                                                                                                                                                    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [EN_18031-1] | EN 18031-1: Common security requirements for radio equipment - Part 1: Internet connected radio equipment                                                                                                                                                                         | 2024      | 2024-08-01 | <a href="https://www.nen.nl/nen-en-18031-1-2024-en-328074">https://www.nen.nl/nen-en-18031-1-2024-en-328074</a>                                                                                                                                                                                         |
| [EN_18031-2] | EN 18031-2: Common security requirements for radio equipment - Part 2: radio equipment processing data, namely Internet connected radio equipment, childcare radio equipment, toys radio equipment and wearable radio equipment                                                   | 2024      | 2024-08-01 | <a href="https://www.nen.nl/nen-en-18031-2-2024-en-328073">https://www.nen.nl/nen-en-18031-2-2024-en-328073</a>                                                                                                                                                                                         |
| [EN_18031-3] | EN 18031-3: Common security requirements for radio equipment - Part 3: Internet connected radio equipment processing virtual money or monetary value                                                                                                                              | 2024      | 2024-08-01 | <a href="https://www.nen.nl/nen-en-18031-3-2024-en-328072">https://www.nen.nl/nen-en-18031-3-2024-en-328072</a>                                                                                                                                                                                         |
| [ENTSO-E]    | Provisional Electricity Cybersecurity Impace Index (ECII), ENTSO-E                                                                                                                                                                                                                |           |            | <a href="https://eepublicdownloads.blob.core.windows.net/public-cdn-container/clean-documents/Network%20codes%20documents/NCCS/Provisional%20ECII.pdf">https://eepublicdownloads.blob.core.windows.net/public-cdn-container/clean-documents/Network%20codes%20documents/NCCS/Provisional%20ECII.pdf</a> |
| [FSR]        | Arrêté du 14 septembre 2018 fixant les règles de sécurité et les délais mentionnés à l'article 10 du décret n° 2018-384 du 23 mai 2018 relatif à la sécurité des réseaux et systèmes d'information des opérateurs de services essentiels et des fournisseurs de service numérique | -         | 2018-05-23 | <a href="https://www.legifrance.gouv.fr/loda/id/JORFTEXT000037444012">https://www.legifrance.gouv.fr/loda/id/JORFTEXT000037444012</a>                                                                                                                                                                   |
| [MID-1]      | DIRECTIVE 2014/32/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of measuring instruments (recast)                                                     | 29.3.2014 | 2015-01-27 | <a href="https://eur-lex.europa.eu/eli/dir/2014/32/oj/eng">https://eur-lex.europa.eu/eli/dir/2014/32/oj/eng</a>                                                                                                                                                                                         |
| [MID-2]      | Commission Proposal for Targeted Amendment of the MID Adopted by the College of Commissioners WELMEC                                                                                                                                                                              | -         | 2024-11-29 | <a href="https://single-market-economy.ec.europa.eu/document/dbca473a-69b7-49d6-89b3-44a52dd35fc6_en">https://single-market-economy.ec.europa.eu/document/dbca473a-69b7-49d6-89b3-44a52dd35fc6_en</a>                                                                                                   |

| Ref.      | Document                                                                                                                                                                                                                                                                                      | Version          | Date       | Link                                                                                                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [NCCS]    | Commission Delegated Regulation (EU) 2024/1366 of 11 March 2024 supplementing Regulation (EU) 2019/943 of the European Parliament and of the Council by establishing a network code on sector-specific rules for cybersecurity aspects of cross-border electricity flows                      | 24.5.2024        | 2024-05-24 | <a href="https://eur-lex.europa.eu/eli/reg_del/2024/1366/oj/eng">https://eur-lex.europa.eu/eli/reg_del/2024/1366/oj/eng</a>                                   |
| [NIS-2]   | Directive (EU) 2022/2555 of the European Parliament and of the Council of 14 December 2022 on measures for a high common level of cybersecurity across the Union, amending Regulation (EU) No 910/2014 and Directive (EU) 2018/1972, and repealing Directive (EU) 2016/1148 (NIS 2 Directive) | 2022-12-27       | 2022-12-27 | <a href="https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022L2555">https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022L2555</a>       |
| [NIST]    | NIST Handbook 44                                                                                                                                                                                                                                                                              | 2025             | 2025-01-10 | <a href="https://www.nist.gov/pml/owm/nist-handbook-44-current-edition">https://www.nist.gov/pml/owm/nist-handbook-44-current-edition</a>                     |
| [OIML]    | OIML G 22 for Electric Vehicle Supply Equipment (EVSE)                                                                                                                                                                                                                                        | Edition 2022 (E) | 2022       | <a href="https://www.oiml.org/en/publications/guides/en/files/pdf_g/g022-e22.pdf">https://www.oiml.org/en/publications/guides/en/files/pdf_g/g022-e22.pdf</a> |
| [SNSS]    | Real Decreto 311/2022, de 3 de mayo, por el que se regula el Esquema Nacional de Seguridad                                                                                                                                                                                                    | -                | 2022-05-04 | <a href="https://www.boe.es/eli/es/rd/2022/05/03/311/con">https://www.boe.es/eli/es/rd/2022/05/03/311/con</a>                                                 |
| [RFC9116] | Foudil E., Shafranovich Y., "A File Format to Aid in Security Vulnerability Disclosure", RFC 9116, April 2022.                                                                                                                                                                                | -                | 2022       | <a href="https://www.ietf.org/rfc/rfc9116.txt">https://www.ietf.org/rfc/rfc9116.txt</a>                                                                       |
| [RFC9525] | Saint-Andre P., Salz R., "Service Identity in TLS", RFC 9525, November 2023.                                                                                                                                                                                                                  | -                | 2023       | <a href="https://www.ietf.org/rfc/rfc9525.txt">https://www.ietf.org/rfc/rfc9525.txt</a>                                                                       |

# 10. APPENDIX A: TLS policies for OCPP

OCPP uses TLS for setting up secure connections. To avoid vulnerabilities in the use of TLS, OCPP includes requirements and recommendations on TLS settings. These requirements and recommendations are up until OCPP version 2.1 mostly part of the security profiles.

In the future, the TLS settings will need to be updated, for instance to migrate to TLS version 1.3 or to post-quantum algorithms. To allow smooth updates, the TLS settings are decoupled from the security profiles. The TLS settings are in policies that can be controlled separately from the authentication profile using a variable in the device model.

To allow the decoupling, this appendix / document defines three TLS policies for OCPP:

- OCPP-TLS12-2020 is mostly the same as the TLS policy used in OCPP 2.1 and based on TLS version 1.2 with some minor changes based on discussions in the OCA Cyber Security Task Group. The changes are included as recommendations to preserve backwards compatibility with OCPP 2.1.
- OCPP-TLS12-2025 this profile is the same as OCPP-TLS12-2020 but all recommendations have been made mandatory.
- OCP-TLS13-2025 is a new profile with settings based on TLS 1.3.

## 10.1. OCPP-TLS12-2020

The OCPP-TLS12 policy gathers the existing requirements in OCPP 2.1. These requirements are marked by the requirement number in front of them.

New recommendations have been added based on current best practices for TLS. The new recommendations are not made binding to keep compatibility with the OCPP 2.1 standard.

### 10.1.1. General

[A00.FR.050] For all cryptographic operations, only the algorithms recommended by ENISA in [1], which are suitable for use in future systems, SHALL be used. This restriction includes the signing of certificates in the certificate hierarchy.

[New] For all cryptographic operations, only the algorithms recommended by the European Cybersecurity Certification Group in [2] SHOULD be used. This restriction includes the signing of certificates in the certificate hierarchy.

### 10.1.2. TLS version

[A00.FR.313] The Charging Station and CSMS SHALL only use TLS v1.2 or above (see OCPP requirement A00.FR.313).

[A00.FR.314] Both of these endpoints SHALL check the version of TLS used.

[A00.FR.315] If either side detects that the other supports only older versions of TLS or SSL, it SHALL terminate the connection and trigger an an InvalidTLSVersion security event.

### 10.1.3. Cipher suites

[A00.FR.318] The CSMS SHALL support at least the following four cipher suites:

- TLS\_ECDHE\_ECDSA\_WITH\_AES\_128\_GCM\_SHA256
- TLS\_ECDHE\_ECDSA\_WITH\_AES\_256\_GCM\_SHA384
- TLS\_RSA\_WITH\_AES\_128\_GCM\_SHA256
- TLS\_RSA\_WITH\_AES\_256\_GCM\_SHA384

[A00.FR.319] The Charging Station SHALL support at least the cipher suites (see OCPP requirement A00.FR.319):

- (TLS\_ECDHE\_ECDSA\_WITH\_AES\_128\_GCM\_SHA256 AND TLS\_ECDHE\_ECDSA\_WITH\_AES\_256\_GCM\_SHA384)  
OR
- (TLS\_RSA\_WITH\_AES\_128\_GCM\_SHA256 AND TLS\_RSA\_WITH\_AES\_256\_GCM\_SHA384)

[New] The CSMS SHOULD support the following two cipher suites:

- TLS\_ECDHE\_RSA\_WITH\_AES\_128\_GCM\_SHA256\* TLS\_ECDHE\_RSA\_WITH\_AES\_256\_GCM\_SHA384

[New] The Charging Station SHOULD support at least the cipher suites (see OCPP requirement A00.FR.319):

- (TLS\_ECDHE\_ECDSA\_WITH\_AES\_128\_GCM\_SHA256 AND TLS\_ECDHE\_ECDSA\_WITH\_AES\_256\_GCM\_SHA384)  
OR
- (TLS\_ECDHE\_RSA\_WITH\_AES\_128\_GCM\_SHA256 TLS\_ECDHE\_RSA\_WITH\_AES\_256\_GCM\_SHA384)

[A00.FR.320] The Charging Station and CSMS SHALL NOT use cipher suites that use cryptographic primitives marked as unsuitable for legacy use in [1]. This will mean that when one (or more) of the cipher suites described in this specification becomes marked as unsuitable for legacy use, it SHALL NOT be used anymore.

[A00.FR.322 / 323] If the charging station or CSMS detect that the other side of the connection only supports one of these legacy suites, it SHALL trigger an InvalidTLSCipherSuite security event AND terminate the connection.

[New] The Charging Station and CSMS SHOULD only use cipher suites that the BSI recommends for use up to 2031+ in [3].

[New] The charging station SHOULD use the extension supported groups ([RFC 7919] and [RFC 8422]) to inform the CSMS about the Diffie-Hellman groups it supports. The charging station SHOULD support at least one of the following Diffie-Hellman groups:

- sec256r1
- ffdhe3072

The CSMS SHOULD support both groups.

[New]: The charging station SHOULD use the extension “signature\_algorithms” ([RFC 5246]) to inform the CSMS about the signature algorithm it accepts. The charging station SHOULD support one of the following signature algorithms:

---

- rsa
- ecdsa

The CSMS SHOULD support both algorithms.

#### 10.1.4. Certificates

[A00.FR.501] All certificates SHALL use a private key that provides security equivalent to a symmetric key of at least 112 bits according to Section 5.6.1 of [17]. This is the key size that NIST recommends for the period 2011-2030.

[A00.FR.502] For RSA or DSA, this translates into a key that SHALL be at least 2048 bits long.

[A00.FR.503] For elliptic curve methods, this translates into a key that SHALL be at least 224 bits long.

[A00.FR.505] For signing by the certificate authority RSA-PSS, or ECDSA SHOULD be used.

[A00.FR.506] For computing hash values the SHA256 algorithm SHOULD be used.

[A00.FR.507] The certificates SHALL be stored and transmitted in the X.509 format encoded in Privacy-Enhanced Mail (PEM) format.

[A00.FR.508] All certificates SHALL include a serial number.

[A00.FR.509] The subject field of the certificate SHALL contain the organization name of the certificate owner in the O (organizationName) RDN.

[A00.FR.510] For the CSMS certificate, the subject field SHALL contain the FQDN of the endpoint of the server in the CN (commonName) RDN.

[New] For the CSMS certificate, the Subject Alternate Name (SAN) SHOULD include the DNS-ID identifier for the CSMS following RFC 9525. The Charging station SHOULD authenticate the server on the SAN DNS-ID if it is present. Only when the SAN field is not present in the certificate, SHOULD the charging station authenticate the server based on the CN.

[A00.FR.511] For the Charging Station certificate, the subject field SHALL contain a CN (commonName) RDN which consists of the unique serial number of the Charging Station. This serial number SHALL NOT be in the format of a URL or an IP address so that Charging Station certificates can be differentiated from CSMS certificates.

Note: According to RFC 2818, if a subjectAltName extension of type dnsName is present, that must be used as the identity. This would be incompliant with OCPP and ISO 15118. Therefore it SHOULD NOT be used in Charging Station. It is allowed to use the subjectAltName extension of type dnsName for a CSMS.

[A00.FR.512] For all certificates the X.509 Key Usage extension [19] SHOULD be used to restrict the usage of the certificate to the operations for which it will be used.

[A00.FR.513] If the Charging Station Certificate is also used as SECC Certificate in the ISO 15118 protocol, the certificate SHOULD also meet the requirements in ISO15118-2.

---

[A00.FR.514] For all certificates it is strongly RECOMMENDED NOT to use the X.509 Extended Key Usage extension, to be compatible with the ISO 15118 standard. There are alternative mechanisms available.

## 10.1.5. Other TLS settings

[A00.FR.321] The TLS Server and Client SHALL NOT use TLS compression methods to avoid compression side-channel attacks and to ensure interoperability as described in Section 6 of [10].

[New] Session renegotiation SHOULD only be allowed on the basis of RFC 5746. The CSMS SHOULD reject renegotiation initiated by the charging station.

[New] The “truncated\_hmac” extension in RFC 6066 SHOULD NOT be used.

[New] The TLS extension “encrypt-then-MAC” from RFC 7366 SHOULD be used.

[New] The Heartbeat extension specified in RFC 6520 SHOULD not be used to protect against the Heartbleed vulnerability.

[New] The Extended Master Secret extension defined in RFC 7627 SHOULD be used. [New] Maximum Fragment Length Negotiation Extension, as specified in RFC 6066, SHOULD be supported.

[New] TLS session resumptions SHOULD be supported.

[New] The charging station and CSMS SHOULD support the Server Name Indication.

## 10.2. OCPP-TLS12-2025

The OCPP-TLS12-2025 policy is the same as OCPP-TLS12-2020, except that all the recommendations have been made mandatory to enforce stricter security.

### 10.2.1. General

[A00.FR.050] For all cryptographic operations, only the algorithms recommended by ENISA in [1], which are suitable for use in future systems, SHALL be used. This restriction includes the signing of certificates in the certificate hierarchy.

[New] For all cryptographic operations, only the algorithms recommended by the European Cybersecurity Certification Group in [2] SHALL be used. This restriction includes the signing of certificates in the certificate hierarchy.

### 10.2.2. TLS version

[A00.FR.313] The Charging Station and CSMS SHALL only use TLS v1.2 or above (see OCPP requirement A00.FR.313).

[A00.FR.314] Both of these endpoints SHALL check the version of TLS used.

[A00.FR.315] If either side detects that the other supports only older versions of TLS or SSL, it SHALL terminate the connection and trigger an InvalidTLSVersion security event.

### 10.2.3. Cipher suites

[A00.FR.318] The CSMS SHALL support at least the following four cipher suites:

- TLS\_ECDHE\_ECDSA\_WITH\_AES\_128\_GCM\_SHA256
- TLS\_ECDHE\_ECDSA\_WITH\_AES\_256\_GCM\_SHA384
- TLS\_RSA\_WITH\_AES\_128\_GCM\_SHA256
- TLS\_RSA\_WITH\_AES\_256\_GCM\_SHA384

[New] The CSMS SHALL support the following two cipher suites:

- TLS\_ECDHE\_RSA\_WITH\_AES\_128\_GCM\_SHA256
- TLS\_ECDHE\_RSA\_WITH\_AES\_256\_GCM\_SHA384

[New] The Charging Station SHALL support at least the cipher suites (see OCPP requirement A00.FR.319):

- (TLS\_ECDHE\_ECDSA\_WITH\_AES\_128\_GCM\_SHA256 AND TLS\_ECDHE\_ECDSA\_WITH\_AES\_256\_GCM\_SHA384)  
OR
- (TLS\_ECDHE\_RSA\_WITH\_AES\_128\_GCM\_SHA256 TLS\_ECDHE\_RSA\_WITH\_AES\_256\_GCM\_SHA384)

[A00.FR.320] The Charging Station and CSMS SHALL NOT use cipher suites that use cryptographic primitives marked as unsuitable for legacy use in [1]. This will mean that when one (or more) of the cipher suites described in this specification becomes marked as unsuitable for legacy use, it SHALL NOT be used anymore.

[A00.FR.322 / 323] If the charging station or CSMS detect that the other side of the connection only supports one of these legacy suites, it SHALL trigger an InvalidTLSCipherSuite security event AND terminate the connection.

[New] The Charging Station and CSMS SHALL only use cipher suites that the BSI recommends for use up to 2031+ in [3].

[New] The charging station SHALL use the extension supported groups ([RFC 7919] and [RFC 8422]) to inform the CSMS about the Diffie-Hellman groups it supports. The charging station SHALL support at least one of the following Diffie-Hellman groups:

- sec256r1
- ffdhe3072

The CSMS SHALL support both groups.

[New]: The charging station SHALL use the extension "signature\_algorithms" ([RFC 5246]) to inform the CSMS about the signature algorithm it accepts. The charging station SHALL support one of the following signature algorithms:

- rsa
- ecdsa

The CSMS SHALL support both algorithms.

## 10.2.4. Certificates

[A00.FR.501] All certificates SHALL use a private key that provides security equivalent to a symmetric key of at least 112 bits according to Section 5.6.1 of [17]. This is the key size that NIST recommends for the period 2011-2030.

[A00.FR.502] For RSA or DSA, this translates into a key that SHALL be at least 2048 bits long.

[A00.FR.503] For elliptic curve methods, this translates into a key that SHALL be at least 224 bits long.

[A00.FR.505] For signing by the certificate authority RSA-PSS, ECDSA, or EdDSA SHOULD be used.

[A00.FR.506] For computing hash values the SHA256, SHA384 or SHA512 algorithm SHOULD be used.

[A00.FR.507] The certificates SHALL be stored and transmitted in the X.509 format encoded in Privacy-Enhanced Mail (PEM) format.

[A00.FR.508] All certificates SHALL include a serial number.

[A00.FR.509] The subject field of the certificate SHALL contain the organization name of the certificate owner in the O (organizationName) RDN.

[A00.FR.510] For the CSMS certificate, the subject field SHALL contain the FQDN of the endpoint of the server in the CN (commonName) RDN.

[New] The Charging station SHALL authenticate the server on the Subject Alternate Name (SAN) if it is present. Only when the SAN field is not present in the certificate, SHALL the charging station authenticate the server based on the CN. For the CSMS certificate, the SAN SHOULD include the DNS-ID identifier for the CSMS following RFC 9525.

[A00.FR.511] For the Charging Station certificate, the subject field SHALL contain a CN (commonName) RDN which consists of the unique serial number of the Charging Station. This serial number SHALL NOT be in the format of a URL or an IP address so that Charging Station certificates can be differentiated from CSMS certificates.

Note: According to RFC 2818, if a subjectAltName extension of type dnsName is present, that must be used as the identity. This would be incompliant with OCPP and ISO 15118. Therefore it SHOULD NOT be used in a Charging Station. It is allowed to use the subjectAltName extension of type dnsName for a CSMS.

[A00.FR.512] For all certificates the X.509 Key Usage extension [19] SHOULD be used to restrict the usage of the certificate to the operations for which it will be used.

[A00.FR.513] If the Charging Station Certificate is also used as SECC Certificate in the ISO 15118 protocol, the certificate SHOULD also meet the requirements in ISO15118-2.

[New] It is RECOMMENDED to use the X.509 Extended Key Usage extension, even though this extension is not used in the ISO 15118 standard. The CSMS certificate SHOULD have the serverAuth usage in its certificate. The Charging Station SHOULD have the clientAuth usage in its certificate, but SHOULD NOT have the serverAuth usage. Other usages SHOULD NOT be included in the certificates. The CSMS and Charging Station SHOULD check that the clientAuth and serverAuth usages respectively are included and SHOULD refuse the connection

---

otherwise.

### 10.2.5. Other TLS settings

[A00.FR.321] The TLS Server and Client SHALL NOT use TLS compression methods to avoid compression side-channel attacks and to ensure interoperability as described in Section 6 of [10].

[New] Session renegotiation SHALL only be allow on the basis of RFC 5746. The CSMS SHALL reject renegotiation initiated by the charging station.

[New] The “truncated\_hmac” extension in RFC 6066 SHALL NOT be used.

[New] The TLS extension “encrypt-then-MAC” from RFC 7366 SHALL be used.

[New] The Heartbeat extension specified in RFC 6520 SHALL not be used to protect against the Heartbleed vulnerability.

[New] The Extended Master Secret extension defined in RFC 7627 SHALL be used.

[New] Maximum Fragment Length Negotiation Extension, as specified in RFC 6066, SHALL be supported.

[New] TLS session resumptions SHALL be supported.

[New] The charging station and CSMS SHALL support the Server Name Indication.

## 10.3. OCPP-TLS13-2025

The OCPP-TLS13 policy creates a policy to enforce the use of TLS version 1.3. The OCPP-TLS12 policy does allow the use of TLS 1.3. But the OCPP-TLS13 policy only allows TLS 1.3 or newer and does not allow the use of TLS version 1.2.

TLS version 1.3 is designed to have fewer configuration options than version 1.2. Consequently, the OCPP-TLS13 policy is shorter and simpler than the OCPP-TLS12 policy.

### 10.3.1. General

For all cryptographic operations, only the algorithms recommended by BSI in [12], which are suitable for use in future systems, SHALL be used. This restriction includes the signing of certificates in the certificate hierarchy

### 10.3.2. TLS version

The Charging Station and CSMS SHALL only use TLS v1.3 or above (see OCPP requirement A00.FR.313).

Both of these endpoints SHALL check the version of TLS used.

If either side detects that the other supports only older versions of TLS or SSL, it SHALL terminate the connection and trigger an InvalidTLSVersion security event. Cipher suites and other cryptographic algorithms

The CSMS and charging station SHALL both support at least the following two cipher suites:

---

- TLS13-AES128-GCM-SHA256
- TLS13-AES256-GCM-SHA384

The Charging Station and CSMS SHALL only use cipher suites that the BSI recommends for use up to 2031+ in [3].

The charging station SHALL support at least one of the following key exchange groups:

- sec256r1
- ffdhe3072

The CSMS SHALL support both above key exchange groups.

The charging station SHALL support at least one of the following signature algorithms:

- ecdsa\_secp256r1\_sha256
- rsa\_pss\_rsae\_sha256
- rsa\_pss\_pss\_sha256
- ed25519

The CSMS SHALL support all of the above signature algorithms.

### 10.3.3. Other TLS settings

To protect against the Heartbleed vulnerability, the Heartbeat extension specified in RFC 6520 SHALL NOT be used.

## 10.4. References

| Ref. | Document                                                                                                                                                                                         | Version | Date |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| [1]  | ENISA European Network and Information Security Agency, „Algorithms, key size and parameters report 2014,”                                                                                       |         | 2014 |
| [2]  | European Cybersecurity Certification Group Sub-group on Cryptography, „Agreed Cryptographic Mechanisms                                                                                           | 2.0     | 2025 |
| [3]  | Bundesamt für Sicherheit in der Informationstechnik, „Technical Guideline TR-02102-2 Cryptographic Mechanisms: Recommendations and Key Lengths: Part 2 – Use of Transport Layer Security (TLS),” |         | 2025 |

## 11. APPENDIX B: Device Model Variables

### 11.1. SecurityCtrlr.SecurityPolicy

|                    |                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                             |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Required</b>    | No                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |                                                                                             |
| <b>Component</b>   | <b>componentName</b>                                                                                                                                                                                                                                                                                                                         | SecurityCtrlr                                                                                              |                                                                                             |
| <b>Variable</b>    | <b>variableName</b>                                                                                                                                                                                                                                                                                                                          | SecurityPolicy                                                                                             |                                                                                             |
|                    | <b>variableInstance</b>                                                                                                                                                                                                                                                                                                                      | Scope of the SecurityPolicy, one of:<br>"CSMSWebSocketConnection", "FirmwareDownload",<br>"LogfileUpload". |                                                                                             |
|                    | <b>variableAttributes</b>                                                                                                                                                                                                                                                                                                                    | <b>mutability</b>                                                                                          | ReadWrite                                                                                   |
|                    | <b>variableCharacteristics</b>                                                                                                                                                                                                                                                                                                               | <b>dataType</b>                                                                                            | OptionList                                                                                  |
|                    |                                                                                                                                                                                                                                                                                                                                              | <b>valuesList</b>                                                                                          | List of supported security policies, e.g. OCPP-TLS12-2020, OCPP-TLS12-2025, OCPP-TLS13-2025 |
| <b>Description</b> | <p>This Configuration Variable can be used to configure the security policy the station must use at that next time it reconnects to a CSMS.</p> <p>Implementors can choose from a number of predefined OCA security policies, but it is also allowed to add custom policies, for example if this is required by regulatory requirements.</p> |                                                                                                            |                                                                                             |

### 11.2. SecurityCtrlr.ActiveCSMSSecurityPolicy

|                    |                                                                                                                                                                  |                                                                                                            |                                                                                             |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Required</b>    | No                                                                                                                                                               |                                                                                                            |                                                                                             |
| <b>Component</b>   | <b>componentName</b>                                                                                                                                             | SecurityCtrlr                                                                                              |                                                                                             |
| <b>Variable</b>    | <b>variableName</b>                                                                                                                                              | ActiveCSMSSecurityPolicy                                                                                   |                                                                                             |
|                    | <b>variableInstance</b>                                                                                                                                          | Scope of the SecurityPolicy, one of:<br>"CSMSWebSocketConnection", "FirmwareDownload",<br>"LogfileUpload". |                                                                                             |
|                    | <b>variableAttributes</b>                                                                                                                                        | <b>mutability</b>                                                                                          | ReadOnly                                                                                    |
|                    | <b>variableCharacteristics</b>                                                                                                                                   | <b>dataType</b>                                                                                            | OptionList                                                                                  |
|                    |                                                                                                                                                                  | <b>valuesList</b>                                                                                          | List of supported security policies, e.g. OCPP-TLS12-2020, OCPP-TLS12-2025, OCPP-TLS13-2025 |
| <b>Description</b> | Indicates the security policy the station uses at that moment to connect to the CSMS (so the instance "CSMSWebSocketConnection" of the SecurityPolicy variable). |                                                                                                            |                                                                                             |

## 12. APPENDIX C: Overview of security issues found in Charging Stations

To give a sense of what type of vulnerabilities that are currently present in Charging Stations, the following figure provides an overview of vulnerabilities found in 34 charging stations that have been tested for security by ElaadNL and that have published vulnerabilities based on participation to the Pwn2Own hackers competition (in 2024 and 2025). Please refer to the table below the figure to the exact percentages and paragraphs in this document where guidance is provided for this type of vulnerability.

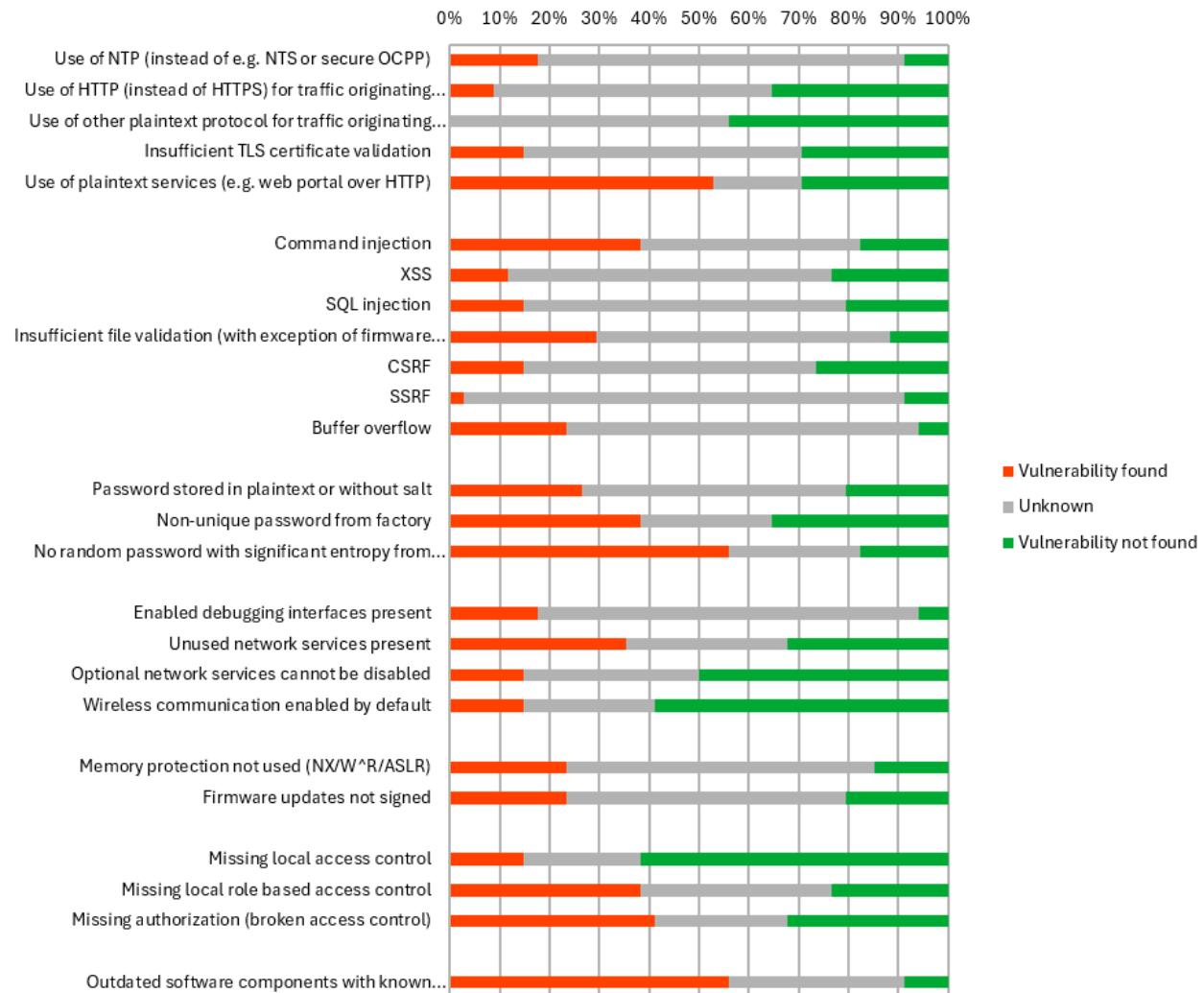



Figure 1. Overview of security vulnerabilities found in Charging Stations

In this figure and table, in case a vulnerability was found in a charging station, it is counted as "Present". If a thorough test was done for a vulnerability but it was not found, it is listed as "Not present". In case no testing was done for a vulnerability or if it is unknown whether it was tested for this vulnerability, it is counted as "Unknown"

Table 1. Overview of vulnerabilities found in Charging Stations

| Vulnerability                                                       | Paragraph             | Present | Not present | Unknown |
|---------------------------------------------------------------------|-----------------------|---------|-------------|---------|
| Use of NTP (instead of NTS)                                         | <a href="#">7.2.3</a> | 18%     | 9%          | 74%     |
| Use of HTTP (instead of HTTPS) for traffic originating from charger | <a href="#">4.2</a>   | 9%      | 35%         | 56%     |

| Vulnerability                                                             | Paragraph                                   | Present | Not present | Unknown |
|---------------------------------------------------------------------------|---------------------------------------------|---------|-------------|---------|
| Use of other plaintext protocol for traffic originating from charger      | <a href="#">4.2</a>                         | 0%      | 44%         | 56%     |
| Insufficient TLS certificate validation                                   | <a href="#">4.2</a>                         | 15%     | 29%         | 56%     |
| Use of plaintext services (e.g. web portal over HTTP)                     | <a href="#">3.6</a>                         | 53%     | 29%         | 18%     |
| Command injection                                                         | <a href="#">3.6</a>                         | 38%     | 18%         | 44%     |
| XSS                                                                       | <a href="#">3.6</a>                         | 12%     | 24%         | 65%     |
| SQL injection                                                             | <a href="#">3.6</a>                         | 15%     | 21%         | 65%     |
| Insufficient file validation (with exception of firmware signature check) | <a href="#">3.6</a>                         | 29%     | 12%         | 59%     |
| CSRF                                                                      | <a href="#">3.6</a>                         | 15%     | 26%         | 59%     |
| SSRF                                                                      | <a href="#">3.6</a>                         | 3%      | 9%          | 88%     |
| Buffer overflow                                                           | <a href="#">3.6</a>                         | 24%     | 6%          | 71%     |
| Password stored in plaintext or without salt                              | <a href="#">4.4.1</a>                       | 26%     | 21%         | 53%     |
| Non-unique password from factory                                          | <a href="#">4.6</a>                         | 38%     | 35%         | 26%     |
| No random password with significant entropy from factory                  | <a href="#">4.6</a>                         | 56%     | 18%         | 26%     |
| Enabled debugging interfaces present                                      | <a href="#">4.9</a>                         | 18%     | 6%          | 76%     |
| Unused network services present                                           | <a href="#">4.12</a>                        | 35%     | 32%         | 32%     |
| Optional network services cannot be disabled                              | <a href="#">4.12</a>                        | 15%     | 50%         | 35%     |
| Wireless communication enabled by default                                 | <a href="#">4.12</a>                        | 15%     | 59%         | 26%     |
| Memory protection not used (NX/W^R/ASLR)                                  | <a href="#">4.12</a>                        | 24%     | 15%         | 62%     |
| Firmware updates not signed                                               | <a href="#">4.8</a>                         | 24%     | 21%         | 56%     |
| Missing local access control                                              | <a href="#">4.13</a>                        | 15%     | 62%         | 24%     |
| Missing local role based access control                                   | <a href="#">4.13</a>                        | 38%     | 24%         | 38%     |
| Missing authorization (broken access control)                             | <a href="#">4.6</a> and <a href="#">4.2</a> | 41%     | 32%         | 26%     |
| Outdated software components with known vulnerabilities                   | <a href="#">3.6</a> and <a href="#">3.7</a> | 56%     | 9%          | 35%     |

[1] Note: manufacturers choosing to build their own MID devices face additional regulatory requirements, particularly in jurisdictions like the EU.

[2] The exact boundary is "enterprises which employ fewer than 250 persons and which have an annual turnover not exceeding EUR 50 million, and/or an annual balance sheet total not exceeding EUR 43 million" as stated in the COMMISSION RECOMMENDATION of 6 May 2003 concerning the definition of micro, small and medium-sized enterprises.

[3] Both ENCS and ElaadNL are owned by the Dutch grid operators

[4] CIO - Cybersecurity Maturity Model Certification: <https://dodcio.defense.gov/CMMC/Model/>

[5] <https://www.nist.gov/system/files/documents/2025/01/10/2025-HB-44-20250106-Final-508.pdf>

[6] Please note that this requires DNSSEC

[7] When using webportals, besides authentication, authorization is also important: functions must check whether a user is

---

logged in.

[8] Please note that transaction and logging data could be considered important, and should therefore not be stored on temporary partitions, since this would cause loss of these items in case of power loss.

[9] Note: ISO/IEC 27001 is required by the ENCS requirements "*covering the full EV charging system and its management processes*"